화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.9, No.5, 556-562, September, 2003
Photocatalytic Decomposition of p-nitrophenol over Nanosized TiO2/SiO2 Particles Prepared Using the Microemulsion Method
E-mail:
Nanosized pure TiO2 particles were prepared by hydrolysis of TTIP in the sodium bis (2-ethylhexyl) sulfosuccinate (AOT) reverse micelles. TiO2/SiO2 nanoparticles were also prepared from TEOS as a silicon source and TTIP as a titanium source for comparison. Properties of these particles were characterized by TEM, XRD, FT-IR, BET, TGA and DTA. From XRD data, no significant rutile phase was observed even though the TiO2/SiO2 particles were calcined at 800 ℃. The presence of amorphous silica in TiO2/SiO2 particle enhanced the thermal stability of TiO2 particle and resulted in the suppression of the phase transition from anatase to rutile. The crystallite size of prepared particles decreased and the surface area increased monotonically with an increase of the silica content. From FT-IR analysis, the band for Ti-O-Si vibration was observed and the band for Si-O-Si vibration increased with an increase of the silica content. The micrographs of TEM show that the TiO2/SiO2 nanoparticles have a spherical morphology with a narrow size distribution. In addition, TiO2/SiO2 particles have higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (90/10) particles show the highest activity on the photocatalytic decomposition of p-nitrophenol.
  1. Siegel RW, Annu. Rev. Mater. Sci., 21, 559 (1991)
  2. Yi KC, Fendler JH, Langmuir, 6, 1519 (1990)
  3. Youn HC, Baral S, Fendler JH, J. Phys. Chem., 92, 6320 (1988)
  4. Lee MS, Lee GD, Park SS, Hong SS, J. Ind. Eng. Chem., 9(1), 89 (2003)
  5. Petit C, Lixon P, Pileni MP, J. Phys. Chem., 94, 1598 (1990)
  6. Leung R, Hou MJ, Shah DO, Surfactant Science Series, D.T. Wasan, M.E. Ginn, and D.O. Shah Eds., p. 315, Marcel Dekker, New York (1988)
  7. Pillai V, Shah DO, Industrial Application of Microemulsion, C. Solans, H. Kunieda Eds., p. 227, Marcel Dekker, New York (1997)
  8. Lim KT, Hwang HS, Lee MS, Lee GD, Hong SS, Johnston KP, Chem. Commun., 14, 1528 (2002)
  9. Lee MS, Lee GD, Ju CS, Lim KT, Hong SS, J. Korean Ind. Eng. Chem., 13(3), 216 (2002)
  10. Fujishima A, Honda K, Nature, 37, 238 (1972)
  11. Parmon VN, Zamareav KI, Coord E, Chem. Rev., 69, 57 (1989)
  12. Ollis DF, Al-Ekabi H, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam (1993)
  13. Anderson C, Bard AJ, J. Phys. Chem., 99(24), 9882 (1995)
  14. Fu X, Clark LA, Yang Q, Anderson MA, Environ. Sci. Technol., 30, 647 (1996)
  15. Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249 (2000)
  16. Takata T, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K, J. Photochem. Photobiol. A-Chem., 106, 45 (1997)
  17. Hong SS, Ju CS, Lim CG, Ahn BH, Lim KT, Lee GD, J. Ind. Eng. Chem., 7(2), 99 (2001)
  18. Lee GD, Jung SK, Jeong YJ, Park JH, Suh CS, Ahn BH, Hong SS, J. Ind. Eng. Chem., 8(1), 22 (2002)
  19. Cullity BD, Elements of X-ray Diffraction, Adison-Wesley, Reading, MA. 102 (1978)
  20. Viswanath RN, Ramasamy S, Colloids Surf. A: Physicochem. Eng. Asp., 133, 49 (1998)
  21. Duran A, Serna C, Fornes V, Fernandez-Navarro JM, J. Non-Cryst. Solids, 82, 69 (1986)
  22. Dutoit DC, Schneider M, Baiker A, J. Catal., 153(1), 165 (1995)