화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.41, No.6, 773-780, December, 2003
토양 슬러리 시스템에서 Phenanthrene 생분해의 중간체 생성 모델링
Modeling for Phenanthrene Biodegradation Involving Intermediate Formation in a Soil-Slurry System
E-mail:
초록
토양 슬러리 시스템에서 유해물질의 미생물 분해시 중간체 생성을 고려한 속도론적 모델을 개발하였다. 모델은 모델물질인 phenanthrene과 중간체로서 1-hydroxy-2-naphthoate의 흡착과 탈착, 각 물질의 일차기질로서 액상 분해로 구성되어 있다. 1단계 완전분해와 중간체를 생성하는 2단계 모델의 전산모사 결과 물질전달 속도와 중간체 분해속도의 차이에 따라 phenanthrene 분해에 있어서 다른 율속 경향을 보여주었다. 2단계 모델의 전산모사 결과 1단계 모델에 비해 phenanthrene분해, 세포성장, CO2 생성에 대한 지연 현상을 보였따. 중간체 분해속도의 감소는 초기 미생물의 적응기간을 연장시키는 반면, 물질전달 속도의 감소는 적응기간에는 큰 영향이 없으나 지수성장대의 분해속도를 감소시키는 역할을 하였따. 2단계 모델을 통해 중간체 흡착지연에 따른 결과로서 물질전달 속도가 늦을수록 미생물 분해가 빨리 시작되는 역전현상을 발견할 수 있었다. 물질전달과 중간체 생성을 고려한 토양 슬러리 모델 연구를 통해 오염물질의 분해에 있어 적응기간 지연, 후단의 완전분해 지연, 낮은 미생물 수율 및 초기 오염물질과 생성 중간체의 관계 특이성 등의 현상을 적절하게 설명해 줄 수 있는 방법을 제시하였다.
A kinetic model for the biodegradation of hazardous organic compounds involving intermediate formation in a soil-slurry system was developed. The model included sorption and desorption of a model compound (phenanthrene) and its intermediate (1-hydroxy-2-naphthoate), and their utilization by microorganisms as a primary substrate in the dissolved phase. Simulation results with one-step (complete degradation) and two-step (intermediate formation) models demonstrated how different kinetics of mass transfer and intermediate degradation lead to rate-limiting patterns in the phenanthrene biodegradation. Intermediate formation in the two-step model caused a delay in phenanthrene degradation, cell growth and CO2 production compared to the one-step model. Slow biodegradation of intermediate made lag time longer, while slow mass transfer decreases phenanthrene degradation rate in the cell growth phase. Reverse phenomena, faster initiation of biodegradation with decreasing mass transfer rate, were found in the two-step model, which resulted from delays of intermediate sorption. The soilslurry modeling involving intermediate formation and mass transfer provides tools describing various phenomena such as extensions of lag time, delays of biodegradation in the later period, low cell yields, and particular relationships between initial substrates and intermediates.
  1. Keith LH, Telliard TA, Environ. Sci. Technol., 13, 416 (1979) 
  2. Gibson DT, Subramanian V, Gibson DT, Microbial Degradation of Organic Compounds, Marcel Dekker, New York, 181-252 (1984)
  3. Cerniglia CE, Biodegradation, 3, 351 (1992) 
  4. Woo SH, Rittmann BE, Biodegradation, 11, 213 (2000) 
  5. Guerin WF, Jones GE, Appl. Environ. Microbiol., 54(4), 937 (1988)
  6. Jahan K, Ahmed T, Maier WJ, Water Environ. Res., 69, 317 (1997) 
  7. Ahn IS, Lion LW, Shuler ML, Biotechnol. Bioeng., 51(1), 1 (1996) 
  8. Ramaswami A, Luthy RG, Environ. Sci. Technol., 31, 2260 (1997) 
  9. Zhang W, Maier WJ, Miller RM, Environ. Sci. Technol., 31, 2211 (1997) 
  10. Woo SH, Park JM, Rittmann BE, Biotechnol. Bioeng., 73(1), 12 (2001) 
  11. VanBriesen JM, Rittmann BE, Biotechnol. Bioeng., 67(1), 35 (2000) 
  12. Karickhoff SW, Brown DS, Scott TA, Water Res., 13, 241 (1979) 
  13. Rittmann BE, Seagren E, Wrenn B, Valocci AJ, Ray C, Raskin L, In Situ Bioremediation, 2nd ed., Noyes Publishers, Inc., Park Ridge, New Jersey (1994)
  14. Hansch C, Leo A, Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York (1979)
  15. Perry RH, Green DW, Maloney JO, Perry's Chemical Engineer's Handbook, 6th ed., McGraw-Hill, New York (1984)
  16. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58, 19 (1966)
  17. Thibodeaux LJ, Environmental Chemodynaics: Movement of Chemicals in Air, Water, and Soil, Wiley-Interscience, New York (1995)
  18. McCarty PL, "Energetics and Bacterial Growth," The Fifth Rudolf Research Conference, New Jersey (1969)
  19. Guha S, Jaffe PR, Biotechnol. Bioeng., 50(6), 693 (1996) 
  20. Volkering F, Breure AM, Sterkenburg A, VanAndel JG, Appl. Microbiol. Biotechnol., 36, 548 (1992)
  21. Guerin WF, Boyd SA, Appl. Environ. Microbiol., 58(4), 1142 (1992)