화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.1, 54-58, February, 2004
접촉각 측정을 통한 Alkanethiol로 표면 처리한 은 분말의 표면 특성 연구
A Study on Surface Properties of Alkanethiol-Modified Silver Powder through Contact Angles Measurement
E-mail:
초록
은 분말을 alkanethiol로 표면 처리한 후, alkanethiol의 탄소 개수 변화에 따른 은 입자의 표면 특성변화를 접촉각 측정을 통해 연구하였다. 이때 은 입자 표면에 alkanethiol의 흡착여부를 DRIFT (diffuse reflectance infrared fourier transform) spectrum를 통해 확인하였다. 접촉각은 Washburn 식을 바탕으로 한 liquid penetration 방법으로 측정하였고, 이 측정법의 보완을 위해 분말에 압력을 가하여 원판형태로 만들어 그 표면에서 접촉각을 측정하는 sessile drop 방법을 함께 사용하였다. 그 결과 순수한 은 입자의 물에 대한 접촉각은 두 가지 방법에 대해 각각 53 °, 40 °가 나왔고, 다양한 탄소개수(C4-C12)의 alkanethiol로 표면 처리한 입자는 모두 90 ° 이상의 결과를 얻었다. 즉 alkanethiol로 처리한 은 입자의 표면이 소수성으로 변했음을 의미한다. 여기서 처리한 alkanethiol의 탄소개수가 증가할수록 접촉각은 계속 증가했으나, 접촉각의 증가 폭은 상대적으로 점차 감소하였다.
Contact angles of silver powders were measured for investigation of surface properties of silver particles as changing alkyl chain length of alkanethiol. Silver powders were modified by various alkanethiol (C4 ~ C12). Adsorption of alkanethiol on silver particles was confirmed by DRIFT (diffuse reflectance infrared fourier transform) spectrum. Contact angles were measured by liquid penetration method based on Washburn equation and sessile drop method on tablet of compressed powder. In result, the values of contact angles on water were 53°, 40° about two method. Contact angles of surface treated particles by alkanethiol of varied alkyl chain length were larger than 90°. Because of bonding between silver and sulfur in alkanethiol, silver surface was surrounded by alkyl gruops of alkanethiol. Surface properties of silver particles were increased on hydrophobicity with alkyl chain length of alkanethiol. In comparison with increase of contact angle according to increase of alkyl chain length of alkanethiol, the widths of increasing contact angle were relatively decreased.
  1. Ulman A, Chem. Rev., 96(4), 1533 (1996) 
  2. Schmid G, Chem. Rev., 92, 1709 (1992) 
  3. Siebold A, Walliser A, Nardin M, Oppliger M, Schultz J, J. Colloid Interface Sci., 186(1), 60 (1997) 
  4. Balkenende AR, van de Boogaard HJAP, Scholten M, Willard NP, Langmuir, 14(20), 5907 (1998) 
  5. Washburn EW, Phys. Rev., 17, 273 (1921) 
  6. Chrino L, Mollet H, Powder Technol., 11, 189 (1975) 
  7. Pepin X, Blanchon S, Couarraze G, Int. J. Pharm., 152, 1 (1997) 
  8. Lee JY, Lee SH, Kim SW, Mater. Chem. Phys., 63, 251 (2000) 
  9. Prestidge CA, Tsatouhas G, Int. J. Pharm., 198, 201 (2000) 
  10. Buckton G, Darcy P, McCarthy D, Colloids Surf. A: Physicochem. Eng. Asp., 95, 27 (1995) 
  11. K-12 User Manual, Kruss GmbH, Hamburg, Germany (1996)
  12. Grundke K, Boerner M, Jacobasch HJ, Colloids Surf., 58, 47 (1991) 
  13. Desai TR, Li D, Finlay WH, Wong JP, Colloids Surf. B: Biointerfaces, 22, 107 (2001) 
  14. Rho SB, Lim MA, Polym.(Korea), 23(5), 662 (1999)
  15. Han HS, Han SW, Kim CH, Kim K, Langmuir, 16(3), 1149 (2000) 
  16. Han HS, Kim CH, Kim K, Appl. Spectrosco., 52, 1047 (1998) 
  17. Hostetler MJ, Stokes JJ, Murray RW, Langmuir, 12(15), 3604 (1996) 
  18. Fuji M, Takei T, Watanabe T, Chikazawa M, Colloids Surf. A: Physicochem. Eng. Asp., 154, 13 (1999)