Polymer(Korea), Vol.28, No.2, 185-193, March, 2004
디메틸아크릴산 아연을 이용한 아크릴로나이트릴-부타디엔 고무 나노복합체의 제조 및 물성
Preparation and Physical Properties of Acrylonitrile-Butadiene Rubber Nanocomposites Filled with Zinc Dimethacrylate
E-mail:
초록
아크릴로니트릴-부타디엔 고무에 디메틸아크릴산 아연을 적용하여 탄성나노복합체를 제조하였고, 디메틸아크릴산 아연의 첨가방법 및 함량에 따른 가교구조, 기계적 물성, 파단면 형태를 조사하였다. 디메틸아크릴산 아연의 함량증가에 따라 이온가교결합의 증가에 기인하여 총 가교밀도는 증가하였다. 인장강도와 인열강도는 디메틸아크릴산 아연 함량이 증가함에 따라 증가하여 최대치를 보인 후 하락하는 경향을 보였다. 디메틸아크릴산 아연 첨가방법에 따라 인열강도와 균열저항성은 크게 영향을 받았다. 즉, 용융혼합과정에서 실시간으로 산화아연과 메타아크릴산을 반응시켜 디메틸아크릴산 아연을 형성시키는 나노복합체가 디메틸아크릴산 아연 분말을 직접 첨가하는 복합체에 비해 월등히 높은 인열강도와 균열저항성을 보였다. 이는 실시간 나노복합체가 분말첨가 복합체보다 디메틸아크릴산 아연 입자크기가 더 작고 균일하게 분산되기 때문에 기인된 것으로 나타났다.
Elastomeric nanocomposites were prepared by employing zinc dimethacrylate into an acrylonitrile-butadiene rubber, and their network structures, mechanical properties, and fracture morphologies were investigated according to the adding methods and contents of zinc dimethacrylate. The total crosslink density increased with increasing the zinc dimethacrylate level, due to increased ionic bonds. Both the tensile strength and tear strength increased with increasing zinc dimethacrylate loadings, and then decreased after reaching a maximum value. It was found that the tear strength and crack resistance were greatly affected by the mixing method of zinc dimethacrylate. The in-situ nanocomposites, where zinc dimethacrylate particles were formed by the reaction of zinc oxide and methacrylic acid, showed much improved tear strength and crack resistance compared to those of the nanocomposites based on the direct mixing of zinc dimethacrylate powders. This was because of the finer zinc dimethacrylate particles and improved dispersion of the in-situ nanocomposites.
- Nagata N, Sato T, Fujii T, Saito Y, Appl. Polym. Symp. Ser., 53, 103 (1994)
- Yuan XH, Peng ZL, Zhang Y, Zhang YX, J. Appl. Polym. Sci., 77(12), 2740 (2000)
- Peng ZL, Liang X, Zhang YX, Zhang Y, J. Appl. Polym. Sci., 84(7), 1339 (2002)
- Costin R, Nagel W, Ekwall R, Rubber Chem. Technol., 64, 152 (1991)
- Yuan X, Zhang Y, Zhang Y, Sheng C, China Synthetic Rubber Ind., 22, 55 (1999)
- Yuan X, Peng X, Zhang Y, Zhang Y, Polym. Compos., 7, 431 (1999)
- Saito Y, Fujino Y, Ikeda A, SAE Int. Cong. Exp.(890359), 3 (1989)
- Saito Y, Nishimura K, Asada M, Toyoda A, Nippon Gomu Kyokaishi, 67, 867 (1994)
- Brown HP, Rubber Chem. Technol., 36, 931 (1963)
- Matsuda H, Minoura Y, J. Appl. Polym. Sci., 24, 811 (1978)
- Macknight WJ, Earnest TR, J. Appl. Polym. Sci., 16, 41 (1981)
- Yin DH, Zhang Y, Peng ZL, Zhang YX, Eur. Polym. J., 39, 99 (2003)
- Sperling LH, Introduction to Physical Polymer Science, 3rd Ed., Wiley-Interscience, New York (2001)
- Etzel AJ, Goldstein SJ, Panabaker HJ, Fradkin DG, Sperling LH, J. Chem. Ed., 63, 731 (1986)
- Gent AN, Henry AW, Proc. of Inter. Rubber Conf., Maclaren and Sons, London, p. 193 (1968)
- Rivlin RS, Thomas AG, J. Polym. Sci., 10, 291 (1953)
- Thomas DG, J. Colloid Sci., 20, 267 (1965)
- Greensmith HW, J. Polym. Sci., 21, 175 (1956)
- Greensmith HW, J. Appl. Polym. Sci., 3, 173 (1960)
- Greensmith HW, Thomas AG, J. Polym. Sci., 18, 189 (1955)
- Gent AN, Lindley PB, Thomas AG, J. Appl. Polym. Sci., 8, 455 (1964)
- Lake GL, Lindley PB, J. Appl. Polym. Sci., 8, 707 (1964)
- Gent AN, Pulford CTR, J. Mater. Sci., 19, 3612 (1984)
- Nah C, Ph.D. Dissertation, The University of Akron (1995)
- Kaang S, Nah C, Polymer, 39(11), 2209 (1998)
- Gent AN, Kim HJ, Rubber Chem. Technol., 51, 35 (1978)
- Yin DH, Zhang Y, Zhang YX, Peng ZL, Fan YZ, Sun K, J. Appl. Polym. Sci., 85(13), 2667 (2002)