Journal of the Korean Industrial and Engineering Chemistry, Vol.15, No.8, 896-900, December, 2004
목재로부터 분리된 바이오매스 주요 성분의 열분해 특성
Characteristics of Thermal Decomposition of Major Components of Biomass Isolated from Wood
E-mail:
초록
목재로부터 바이오매스 주요 성분을 분리하여 각 성분의 열분해 특성을 비교 분석하였다. 질소분위기에서 목재와 각구성성분들의 열중량분석을 수행하였다. 발열량 및 원소 분석에서 리그닌 성분의 연료 가치가 가장 크게 나타났다. 열중량 분석결과, 셀룰로오스는 좁은 온도구간에서 커다란 질량감소를 보였으며 , 리그닌은 높은 온도에서 넓은 구간에 걸쳐 분해되었다. 헤미셀룰로오스는 가장 낮은 온도에서 분해가 시작되었다. 분해속도(셀룰로오스 > 헤미셀룰로오스 > 리그닌)와 잔류율은 반대 경향을 나타냈으며 이는 각 성분의 화학구조의 균일성의 차이에 기인한 것으로 해석할 수 있다. DSC 분석결과 셀룰로오스는 흡열반응, 리그닌은 발열반응으로 열분해가 진행됨을 알 수 있었다. 홀로셀룰로오스의 DSC 곡선으로부터 헤미셀룰로오스 분해가 발열반응으로 일어나고 있음을 알 수 있었다.
Separation of major components of biomass from wood was carried out. The purpose of this work was to study the thermal degradation characteristics of each component. The thermal analysis (TA) of the each component and wood was performed by a TA instrument under the condition of inert atmosphere of flowing N2 gas. With the measurement of calorific value and elementary analysis, fuel value of lignin appeared greatest. Cellulose was quickly decomposed within a narrow temperature range, but lignin decomposed slowly over the wide region. Hemicellulose was thermally most unstable and started decomposing at the lowest temperature among the components. On the other hand, Lignin was broken down at the highest temperature. Decomposition rate (cellulose > hemicellulose > lignin) and residual percentage showed reverse tendency, which seemed to be caused by the difference of chemical structure of each component. According to analysis by differential scanning calorimetry (DSC), the pyrolysis of cellulose was obviously endothermic reaction, but lignin was decomposed exothermically. DSC curve for holocellulose showed that hemicellulose was exothermically degraded.
- Buckley P, Pyrolysis Network, 8, 8 (1999)
- Klass DL, Biomass for renewable energy, fuels and chemicals, 495, Academic Press, San Diego (1998)
- Demirbas A, Energy Conv. Manag., 42(11), 1357 (2001)
- McKendry P, Bioresour. Technol., 82, 37 (2002)
- EUREC Agency, The future for renewable energy, prospects and directions, James and James Science Publishers, London (1996)
- Hajaligol M, Waymack B, Kellogg D, J. Anal. Appl. Pyrolysis, 62, 331 (2002)
- Orfao JJM, Antunes FJA, Figueiredo JL, Fuel, 78(3), 349 (1999)
- Technical Association of the Pulp and Paper Industy, Test method T257 om-85.
- Technical Association of the Pulp and Paper Industy, Standard T12 os-75.
- Lai YZ, Sarkanen KV, Isolation and structural studies. Lignins, occurrence, formation, structure and reactions, K. V. Sarkanen, K. V. and C. H. Ludgwig, 165, Wiley-Intersci., New York (1971)
- Whistler RL, BeMiller JN, Methods in Carbohydrate chemistry, Cellulose, R. L. Whistler, 3, Academic Press, New York (1963)
- Academic Society for Testing and Materials, Annual Book of ASTM Standards. part 22: Wood: Adhesives, American Society for Testing and Materials, Philadelphia (1977)
- Fengel D, Wegener G, Wood: chemistry, ultrastructure, reactions, 26, Walter de Gruyter. Berlin (1983)
- W. Glasser and Lignin, fundamentals of thermochemical biomass conversion, Part I, R. P. Overend, T. A. Miline, L. K. Mudge, 61, Elsevier Applied Science Publishers, London and New York (1985)
- Beramendi-orosco LE, Casto-Daz M, Snape CE, Vane CH, Large DJ, Organic Geochemistry, 35, 61 (2004)
- Lai YZ, Chemical degradation, wood and cellulosic chemistry, David N.S. Hon, Nobuo Shiraishi, 463, Marcel Dekker, Inc. New York, Basel (2000)
- Theander O, Cellulose, hemicellulose, extractives, fundamentals of thermochemical biomass conversion, Part I, R. P. Overend, T. A. Miline, L. K. Mudge, 35, Elsevier Applied Science Publishers, London and New York (1985)
- Demirbas A, Energy Conv. Manag., 41(6), 633 (2000)
- Sharma RK, Wooten JB, Vick L, Lin X, Fuel, 83, 146 (2004)
- Kifanisahban F, Kifani A, Belkbir L, Zoulalian A, Arauzo J, Cardero T, Thermochim. Acta, 298(1-2), 199 (1997)
- Erickson M, Miksche GE, Holzforschung, 27, 147 (1973)