화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.109, No.23, 11706-11711, 2005
Thermodynamic and structural characterization of amphiphilic melamine-type monolayers
Monolayers of amphiphilic melamine derivatives are good candidates for the formation of supramolecular structures by hydrogen-bonding of nonsurface active species dissolved in the aqueous subphase by molecular recognition. In the present work, the thermodynamic and structural properties of the Langmuir monolayers of a homologous series of a selected amphiphilic melamine-type are characterized. Good candidates for such studies are the decyl, undecyl, and dodecyl homologues of the 2,4-di(n-alkylamino)-6-amino-1,3,5-triazine (2C(n)H(2n+1)-melamine) monolayers because of their two-phase coexistence region in the accessible temperature range. The characterization of the structural and phase behavior is performed by a combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements. A comprehensive thermodynamic analysis provides good agreement between the experimental surface pressure - area (Pi-A) isotherms and the theoretical curves that were calculated on the basis of equations of state for a large region of monolayer stages developed by us in J. Phys. Chem. 1999, 103, 145. Theoretical curves calculated by application of equations of state only for the fluid monolayer state proposed recently by Rusanov (J. Chem Phys. 2004, 120, 10736) are in good agreement with the experiments in a limited temperature range. A rigorous equation is derived and applied to the experimental results for the calculation of the enthalpy of two-dimensional phase transition. The combination of BAM and GIXD illustrates that the microscopic long range ordering of the condensed monolayer phases is related to the lattice structure of the condensed monolayer.