화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.2, 188-193, April, 2006
효소촉매 담지체용 다공성 베마이트 제조
Formation of Porous Boehmite for Supporting Enzyme Catalyst
E-mail:
초록
용액의 pH, 주입방법, 온도, 유량의 변화를 주면서 질산알루미늄(Al3(NO3)3 9H2O)을 암모니아수(NH4 OH)로 침전시켜 베마이트(Boehmite)를 합성하였다. 베마이트 상이 형성되는 pH 범위와 입자의 형상과 기공특성에 미치는 합성 조건의 영향을 조사하였다. 베마이트는 반응 용액의 pH가 7.5~9일 때 형성되었고, P2jet 주입방법은 침전이 일어나는 동안 pH를 일정하게 유지할 수 있어 용액내의 반응에 참여하는 이온의 농도가 일정하게 유지되어 균일한 크기의 입자와 기공을 형성할 수 있게 하였다. 따라서 비표면적과 기공부피 두 가지 동시에 향상되었다. 온도가 올라갈수록, 유량이 감소할수록 비표면적과 기공부피가 증가함을 보이고, 60 ℃ 이상에서는 미세섬유모양의 입자를 얻을 수 있었다. 최적의 조건은 pH 9에서 P2jet 방법으로 주입하고 반응온도 90℃와 유량 2.5 mL/min을 유지하였을 경우로 비표면적은 385.46 m2/g이고 기공 부피는 1.0252 mL/g을 가지는 평균 10 nm의 기공이 형성된 다공성 베마이트를 얻을 수 있었다.
Synthesis of Boehmite particles were performed through the precipitation of aluminium nitrate (Al3(NO3)3 9H2O) with ammonia water (NH4OH) by changing solution pH, mixing procedure, temperature, and feeding flux. The influence of the synthesis condition, which affected on the pH range of the Boehmite formation, particle morphology and pore property, was investigated. The Boehmite particles were formed in the reaction solution of pH 7.5 9. The particles prepared by P2jet type which maintained the pH uniformly during the precipitation resulted in homogeneous particles and pores because of the constant concentration of the reacted ion in the solution. It was resulted in the improvement of the specific surface area and pore volume of the particle at the same time. With the increasing of temperature and the decreasing of the feeding flux, it was occurred the large specific surface area and pore volume. Also it was presented the fibrillar shaped particles upper 60℃ of the reaction temperature. In this study, the optimal condition of the porous Boehmite was in P2jet type with 90℃ of reaction temperature and 2.5 mL/min of the feeding flux. At this time, the specific surface area, pore volume, and average pore size was 385.46 m2/g, 1.0252 mL/g, 10 nm, respectively.
  1. Kawase M, Nomura T, Majima T, Water Sci. Technol., 21, 77 (1989)
  2. Valentis G, Ledavre J, Water Sci. Technol., 22, 43 (1990)
  3. Hermesse MP, Derpee C, Barthollme Y, Rouxhet P, Can. J. Microbiol., 34, 638 (1987)
  4. Takata I, Tos T, Chibata I, J. Solid Phase Biochem., 2, 225 (1997)
  5. Akin C, Biotechnol. Gen. Eng. Rev., 5, 319 (1987)
  6. Lmai K, Shiomi T, Uchida K, Miya M, Biotechnol. Bioeng., 32, 547 (1982)
  7. Koneracka M, Kopcansky P, Antalik M, Timko M, Ramchand CN, Lobo D, Mehta RV, Upadhyay RV, J. Magn. Magn. Mater., 201, 427 (1999) 
  8. Liu X, Ma Z, Xing J, Liu H, J. Magn. Magn. Mater., 270, 1 (2004) 
  9. Cesteros Y, Salagre P, Medina F, Sueiras JE, Chem. Mater., 11, 123 (1999) 
  10. Deltombe E, Pourbaix M, Corrosion, 14, 498 (1958)
  11. Oberlander RK, Appl. Ind. Catal., 3, 63 (1984)
  12. Bagwell RB, Messing GL, Key Eng. Mater., 115, 45 (1996)
  13. Okada K, Nagashima T, Kameshima Y, Yasumori A, Tsukada T, J. Colloid Interface Sci., 253(2), 308 (2002) 
  14. Hochepied JF, Ilioukhina O, Berger MH, Mater. Lett., 57, 2817 (2003)