Journal of the Korean Industrial and Engineering Chemistry, Vol.17, No.2, 183-187, April, 2006
EC:MA 혼합전해질에서 카본 전극의 용량 특성 - I.전기화학적 특성에 대한 혼합비의 영향 -
Properties of Capacity on Carbon Electrode in EC:MA Electrolytes - I. Effect of Mixing Ratio on the Electrochemical Properties -
E-mail:
초록
리튬-이온 전지에서 전해질 용액에 대한 용매의 선택은 충방전 특성의 개선을 위해 매우 중요하다. 여러 가지 용매 시스템이 리튬 이온 전지의 전해질로서 광범위하게 연구 되어졌다. 본 연구는 다양한 혼합비에서 제조한 1 M LiPF6/EC (ethylene carbonate) : MA (methyl acetate) (x:y) 전해질 용액의 용매 분해 전위와 카본 부극 표면에 형성된 Solid Electrolyte Interphase 피막의 전기화학적 성질을 시간대 전위법, 순환 전압- 전류법, 임피던스법을 이용하여 관찰하였다. 용매분해 전위는 전해질의 이온 전도도에 따라 전위가 달라졌고, 용매의 혼합비에 따라 피막의 전기화학적 특성이 변화되었음을 확인하였다. 결과적으로, 1 M LiPF∂6/(EC+MA) 시스템에서 가장 적절한 EC와 MA의 혼합비는 대략 1:3 (EC:MA, 부피비)이었다.
The choice of solvents for electrolytes solutions is very important to improve the characteristics of charge/discharge in the Li-ion battery system. Such solvent systems have been widely investigated as electrolytes for Li-ion batteries. In this paper, the electrochemical properties of the solid electrolyte interphase film formed on carbon anode surface and the solvent decomposition voltage in 1 M LiPF6/EC:MA(x:y) electrolyte solutions prepared from the various mixing volume
ratios are investigated by chronopotentiometry, cyclic voltammetry, and impedance pectroscopy. As a result, the solvent decomposition voltages are varied with the ionic conductivity of the electrolyte. Electrochemical properties of the passivation film were different, which are dependent on the mixture ratio of the solvents. Therefore, the most appropriate mixing ratio of EC and MA as a solvent in 1 M LiPF6/(EC+MA) system for Li-ion battery is approximately 1:3 (EC:MA, volume ratio).
Keywords:Li-ion battery;solvent decomposition;passivation film (or SEI);mixing ratio;methyl acetate (MA);ethylene carbonate (EC)
- Extended Abstracts, 8th Int. Meeting on Lithium Batteries, Nagoya, Japan, June (1996)
- Nishio K, Yoshimura S, Saito T, J. Power Sources, 55, 115 (1995)
- Choi YK, Park JG, Chung KI, Choi BD, Kim WS, Microchem J., 64, 227 (2000)
- Aurbach D, Granot E, Electrochim. Acta, 42(4), 697 (1997)
- Wagner MW, Electrochim. Acta, 42(10), 1623 (1997)
- Besenhard JO, Winter M, Yang J, Biberacher W, J. Power Sources, 54, 228 (1995)
- Inaba M, Siroma Z, Kawatate Y, Funbiki A, Ogumi Z, J. Power Sources, 68(2), 221 (1997)
- Ue M, Mori S, J. Electrochem. Soc., 142(8), 2577 (1995)
- Chung KI, Chung MW, Kim WS, Kim SK, Sung YE, Choi YK, Bull. Korean Chem. Soc., 22, 189 (2001)
- Ratnakumar BV, Smart MC, Surampudi S, J. Power Sources, 97, 139 (2001)
- Aurbach D, Eineli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H, J. Electrochem. Soc., 142(9), 2882 (1995)
- Deutscher RL, Florence TM, Woods R, J. Power Sources, 55, 41 (1995)
- Manev V, Banov B, Momchilov A, Nassalevska A, J. Power Sources, 57, 99 (1995)
- Dominey LA, New Materials, Developments and Perspectives, ed. Pistoia, G., Elsevier, Amsterdam, ch. 4 (1994)
- Markovsky B, Levi MD, Aurbach D, Electrochim. Acta, 43(16-17), 2287 (1998)