화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.5, 417-421, September, 2006
폴리(실록산 신나메이트)의 광배향 메커니즘 연구
Photo-Alignment Mechanism Study of Poly(siloxane cinnamate)
E-mail:
초록
신나모일 그룹의 광배향 메커니즘과 공정 조건들과의 관계를 이해하기 위하여 폴리(실록산 신나메이트) (PSCN)를 이용한 광배향 연구를 진행하였다. DSC와 편광현미경 실험에서 PSCN의 등방성 온도는 105 ℃ 이상이었으며 액정 온도 구간에서 한 번 배열된 분자들은 저온이나 고온의 등방성 온도 구간에서도 없어지지 않는 열안정성을 보였다. UV/Vis 흡수 실험을 통해서는 광이량화 반응이 주된 광배향 반응이며 신나모일기가 스스로 배열되는 경향이 강하여 광이량화 반응의 효율을 높이는데 기여하지만 광조사가 지나칠 경우 경쟁 관계에 있는 photo-fries 반응이 증가하여 오히려 광배향 성질이 떨어짐을 알 수 있었다. 한편, photo-fries 반응은 UV의 파장을 조절하여 억제할 수 있었다.
Photo-alignment of poly(siloxane cinnamate) (PSCN) was studied to better understand the alignment mechanism of cynnamoyl groups under various process conditions. DSC and polarized microscope studies showed that the isotropic temperature of PSCN was about 105 ℃ and the liquid crystallinity, once formed, did not completely disappear even when the temperature went into the isotropic regions. UV/Vis absorption study suggested that the photo-dimerization was the main photo-alignment mechanism and it's efficiency could be enhanced through the self-alignment of PSCN. It was also found that photo-dimerization was in competition with photo-fries reaction and the photo-alignment of PSCN was interfered with the excessive UV because of the strong photo-fries reaction. However, photo-fries reaction could be suppressed by adjusting the UV wavelength.
  1. Kim YB, Olin H, Park SY, Choi JW, Komitov L, Lagerwall ST, Appl. Phys. Lett., 66, 2218 (1995) 
  2. Pidduck AJ, Bryanbrown GP, Haslam S, Bannister R, Kitely I, Mcmaster TJ, Boogaard L, J. Vac. Sci. Technol. A, 14(3), 1723 (1996) 
  3. Paek SH, Duming CJ, Lee KW, Lien A, J. Appl. Phys., 83, 1270 (1998) 
  4. Kim KC, Ahn HJ, Kim JB, Hwang BH, Baik HK, Langmuir, 21(24), 11079 (2005) 
  5. Ichimura K, Suzuki Y, Seki T, Hosoki A, Aoki K, Langmuir, 4, 1214 (1988) 
  6. Kishida N, Kikui S, Appl. Phys. Lett., 40, 541 (1982) 
  7. Ichimura K, Chem. Rev., 100(5), 1847 (2000) 
  8. Kim C, Trajkovska A, Wallace JU, Chen SH, Macromolecules, 39, 3817 (2006) 
  9. Kim MW, Rastegar A, J. Appl. Phys., 90, 3332 (2001) 
  10. Tejedor RM, Oriol L, Pinol M, Serrano JL, Strehmel V, Stiller B, Stumpe J, J. Polym. Sci. A: Polym. Chem., 43, 4907 (2005) 
  11. Whitcombe MJ, Grilbert A, Mitchell GR, Polymer, 34, 1347 (1993) 
  12. Assaid I, Bosc D, Hardy I, J. Phys. Chem. B, 108(9), 2801 (2004) 
  13. Ichimura K, Akita Y, Akiyama H, Kudo K, Hayashi Y, Macromolecules, 30, 911 (1997)
  14. Chae B, Lee SW, Ree M, Jung YM, Kim SB, Langmuir, 19(3), 687 (2003) 
  15. Ruslim C, Hashimoto M, Matsunaga D, Tamaki T, Ichimura K, Langmuir, 20(1), 95 (2004) 
  16. Jung CC, Rosenhauer R, Rutloh M, Kempe C, Stumpe J, Macromolecules, 38(10), 4324 (2005) 
  17. Furumi S, Kidowaki M, Ogawa M, Nishiura Y, Ichimura K, J. Phys. Chem. B, 109(19), 9245 (2005) 
  18. Hasegawa M, Taira Y, J. Photopolym Sci. Technol., 8, 241 (1995)
  19. Nishikawa M, Taheri B, West JL, SID'98 Digest, 131 (1998)
  20. Yaroshchuk O, Pelzl G, Pirwitz G, Reznikov Y, Zhschke H, Kim J, Kwon SB, Jpn. J. Appl. Phys., 39, 1221 (2000) 
  21. Lui J, Liang X, Gao H, Jpn. J. Appl. Phys., 39, 1221 (2000) 
  22. Gu H, Xie P, Fu P, Zhang T, Zhang R, Adv. Funct. Mater., 15, 125 (2005) 
  23. Keller P, Chem. Mater., 2, 3 (1990) 
  24. Liu J, Liang X, Tang H, Xu SY, Gao HJ, Thin Solid Films, 384(2), 212 (2001) 
  25. Sinsermsuksakul R, Bualek S, J. Mol. Struct., 348, 175 (1995) 
  26. Lee BH, Ham SK, Lim JC, Song K, Polym.(Korea), 21(6), 1059 (1997)
  27. Date RW, Fawcett AH, Geue T, Haferkorn J, Malcolm RK, Stumpe J, Macromolecules, 31(15), 4935 (1998) 
  28. Stempe J, Selbmann C, Kreysig D, J. Photochem. Photobiol. A-Chem., 58, 15 (1991)