화학공학소재연구정보센터
Polymer(Korea), Vol.30, No.6, 478-485, November, 2006
주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성
Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain
E-mail:
초록
폴리(에틸렌글리콜)메틸에테르[poly(ethyleneglycol)methyl ether, MPEG] 곁사슬기와 짧고 강직한 디메틸페녹시(dimethylphenoxy) 곁사슬기를 갖는 폴리히드록시아미드(poly(hydroxyamide)s, PHAs)의 물성 및 난연특성을 DSC, TGA, FTIR, pyrolysis combustion flow calorimeter(PCFC), X-ray diffractometer를 사용하여 조사하였다. 중합체들의 최대분해온도는 공기 분위기하에서 276∼396 ℃의 범위를 보였다. PHAs의 heat release(HR) capacity와 total heat release(total HR) 값들은 MPEG의 분자량 증가에 따라 증가됨을 보였다. 290 ℃에서 열처리된 M-PHA 2의 경우 열처리 시간에 따라서 HR capacity 값들은 253 J/gK에서 42 J/gK로 감소하였고, 60% 중량 감소 온도는 408 ℃에서 856 ℃로 증가하였다. PHAs의 분해 활성화 에너지는 129.3∼235.1 kJ/mol의 범위를 보이고, 전환율에 따라 증가하였다. PHAs의 인장 모듈러스는 MPEG의 사슬길이가 증가함에 따라 감소하였으며, PBO로 전환된 후에는 초기 모듈러스보다 더 상승하였다.
Physical properties and flammability of polyhydroxyamides (PHAs) having poly(ethyleneglycol)methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter(PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of 276~397 ℃ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with increasing molecular weight of MPEG. In case of M-PHA 2 annealed at 290 ℃, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to 856 ℃ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of 129.3∼235.1 KJ/mol, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.
  1. Stroog CE, Preg. Polym. Sci., 16, 561 (1991) 
  2. Ghosh MK, Mittal KL, Polyimides, Marcel Dekker, New York (1996)
  3. Wolfe JF, Arnold FE, Macromolecules, 14, 909 (1981)
  4. Wolfe JF, Arnold FE, Loo BH, Macromolecules, 14, 915 (1981)
  5. Hunsaker ME, Price GE, Bai SJ, Polymer, 33, 2128 (1992)
  6. Lyon RE, PMSE, 71, 26 (1994)
  7. Imai Y, Itoya K, Kakimoto MA, Macromol. Chem. Phys., 17, 201 (2000)
  8. Baik DH, Kim EK, Kim MK, J. of the Korean Fiber Society, 40, 13 (2003)
  9. Zhang HQ, Farris RJ, Westmoreland PR, Macromolecules, 36(11), 3944 (2003)
  10. Marcos-Fernandez A, Lozano AE, de Abajo J, de la Campa JG, Polymer, 42(19), 7933 (2001)
  11. Hsiao SH, Yu CH, Macromol. Chem. Phys., 199, 1247 (1998)
  12. Hsiao SH, Dai LR, J. Polym. Sci. A: Polym. Chem., 37, 2129 (1998)
  13. Hsiao SH, Huang YH, Eur. Polym. J., 40, 1127 (2004)
  14. Farris RJ, Jo BW, CUMIRP Report(Univ. Mass.), part 1 (1997)
  15. Liou GS, Hsiano SH, Macromol. Chem. Phys., 201, 42 (2000)
  16. Stevens MP, Polymer Chemistry An Introduction, Ixfird Yniversity Press, New York (1990)
  17. Walters RN, Lyon RE, J. Appl. Polym. Sci., 87(3), 548 (2003)
  18. Walters RN, Lyon RE, J. Anal. Appl. Pyrolysis, 71, 27 (2004)
  19. Chang JH, Farris RJ, Polym. Eng. Sci., 39(4), 638 (1999)
  20. Yoon DS, Choi JK, Jo BW, Polym.(Korea), 29(5), 493 (2005)
  21. Duran R, Ballauff M, Wenzel M, Wegner G, Macromolecules, 21, 2897 (1988)
  22. Lee KS, Kim HM, Rhee JM, Lee SM, Macromol. Chem., 192, 1033 (1991) 
  23. Hu YH, Chen CY, Polym. Degrad. Stabil., 80, 1 (2003)
  24. Mequanint K, Sanderson R, Pasch H, Polym. Degrad. Stabil., 77, 121 (2002)
  25. Zhao H, wang YZ, Wang DY, Wu B, Chen DQ, Wang XL, Yang KK, Polym. Degrad. Stabil., 80, 135 (2003)
  26. Kim SS, Chung YJ, J. Korean Ind. Eng. Chem., 14(6), 793 (2003)
  27. Kubota T, Nakanish R, Polym. Sci. Part B, 2, 655 (1964)