Polymer(Korea), Vol.30, No.6, 478-485, November, 2006
주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성
Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain
E-mail:
초록
폴리(에틸렌글리콜)메틸에테르[poly(ethyleneglycol)methyl ether, MPEG] 곁사슬기와 짧고 강직한 디메틸페녹시(dimethylphenoxy) 곁사슬기를 갖는 폴리히드록시아미드(poly(hydroxyamide)s, PHAs)의 물성 및 난연특성을 DSC, TGA, FTIR, pyrolysis combustion flow calorimeter(PCFC), X-ray diffractometer를 사용하여 조사하였다. 중합체들의 최대분해온도는 공기 분위기하에서 276∼396 ℃의 범위를 보였다. PHAs의 heat release(HR) capacity와 total heat release(total HR) 값들은 MPEG의 분자량 증가에 따라 증가됨을 보였다. 290 ℃에서 열처리된 M-PHA 2의 경우 열처리 시간에 따라서 HR capacity 값들은 253 J/gK에서 42 J/gK로 감소하였고, 60% 중량 감소 온도는 408 ℃에서 856 ℃로 증가하였다. PHAs의 분해 활성화 에너지는 129.3∼235.1 kJ/mol의 범위를 보이고, 전환율에 따라 증가하였다. PHAs의 인장 모듈러스는 MPEG의 사슬길이가 증가함에 따라 감소하였으며, PBO로 전환된 후에는 초기 모듈러스보다 더 상승하였다.
Physical properties and flammability of polyhydroxyamides (PHAs) having poly(ethyleneglycol)methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter(PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of 276~397 ℃ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with increasing molecular weight of MPEG. In case of M-PHA 2 annealed at 290 ℃, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to 856 ℃ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of 129.3∼235.1 KJ/mol, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.
Keywords:poly(hydroxyamide)s;poly(benzoxazole)s;thermal cyclization reaction;activation energy;heat release rate
- Stroog CE, Preg. Polym. Sci., 16, 561 (1991)
- Ghosh MK, Mittal KL, Polyimides, Marcel Dekker, New York (1996)
- Wolfe JF, Arnold FE, Macromolecules, 14, 909 (1981)
- Wolfe JF, Arnold FE, Loo BH, Macromolecules, 14, 915 (1981)
- Hunsaker ME, Price GE, Bai SJ, Polymer, 33, 2128 (1992)
- Lyon RE, PMSE, 71, 26 (1994)
- Imai Y, Itoya K, Kakimoto MA, Macromol. Chem. Phys., 17, 201 (2000)
- Baik DH, Kim EK, Kim MK, J. of the Korean Fiber Society, 40, 13 (2003)
- Zhang HQ, Farris RJ, Westmoreland PR, Macromolecules, 36(11), 3944 (2003)
- Marcos-Fernandez A, Lozano AE, de Abajo J, de la Campa JG, Polymer, 42(19), 7933 (2001)
- Hsiao SH, Yu CH, Macromol. Chem. Phys., 199, 1247 (1998)
- Hsiao SH, Dai LR, J. Polym. Sci. A: Polym. Chem., 37, 2129 (1998)
- Hsiao SH, Huang YH, Eur. Polym. J., 40, 1127 (2004)
- Farris RJ, Jo BW, CUMIRP Report(Univ. Mass.), part 1 (1997)
- Liou GS, Hsiano SH, Macromol. Chem. Phys., 201, 42 (2000)
- Stevens MP, Polymer Chemistry An Introduction, Ixfird Yniversity Press, New York (1990)
- Walters RN, Lyon RE, J. Appl. Polym. Sci., 87(3), 548 (2003)
- Walters RN, Lyon RE, J. Anal. Appl. Pyrolysis, 71, 27 (2004)
- Chang JH, Farris RJ, Polym. Eng. Sci., 39(4), 638 (1999)
- Yoon DS, Choi JK, Jo BW, Polym.(Korea), 29(5), 493 (2005)
- Duran R, Ballauff M, Wenzel M, Wegner G, Macromolecules, 21, 2897 (1988)
- Lee KS, Kim HM, Rhee JM, Lee SM, Macromol. Chem., 192, 1033 (1991)
- Hu YH, Chen CY, Polym. Degrad. Stabil., 80, 1 (2003)
- Mequanint K, Sanderson R, Pasch H, Polym. Degrad. Stabil., 77, 121 (2002)
- Zhao H, wang YZ, Wang DY, Wu B, Chen DQ, Wang XL, Yang KK, Polym. Degrad. Stabil., 80, 135 (2003)
- Kim SS, Chung YJ, J. Korean Ind. Eng. Chem., 14(6), 793 (2003)
- Kubota T, Nakanish R, Polym. Sci. Part B, 2, 655 (1964)