Langmuir, Vol.22, No.16, 6951-6955, 2006
Direct visualization of dewetting of molecularly thin liquid films on solid surfaces
The effect of the surface energy gamma, disjoining pressure, Pi, and roughness on the dewetting of molecularly thin liquid lubricant films on magnetic disks, which have sub-nanometer surface topography, has been investigated by visualizing the dewetting process directly using ellipsometric microscopy. The dewetting process of thin liquids on the rough surface is determined not only by the well-known instability of films, which is determined by the sign of d Pi/dh, but also by the sign of Pi and the surface topography of the substrate even if its roughness is of the sub-nanometer order. The dewetting film formed small droplets, which were not along the surface topography of the substrate, when Pi < 0. On the other hand, it formed grooves along the surface topography with a sub-nanometer roughness when Pi > 0. Moreover, the sub-nanometer roughness initiated the dewetting of the metastable liquid thin films.