화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.1, 20-24, January, 2007
리파아제가 함입된 락타이드-글리콜라이드 공중합체 나노입자의 제조 및 특성
Formulation and Characterization of Lipase Loaded Poly(D,L- lactide-co-glycolide) Nanoparticles
E-mail:
초록
제조과정에서 단백질 약물의 생물학적 활성의 보존은 약물의 성공적인 전달에 있어 여전히 중요한 과제이다. 이중에멀션 유기용매 증발법을 사용하여 나노입자를 제조하였고, 입자의 형태, 크기, 함입률 그리고 방출속도와 방출되는 효소의 활성을 살펴보았다. 입자의 크기는 고분자인 락타이드 글리콜라이드 공중합체의 농도가 증가할수록 커졌으며, 유화제의 농도에는 큰 차이가 없었으나, 4% PVA의 사용에서 가장 좁은 입자분포를 얻을 수 있었다. 최적의 조건에서 72.6%의 단백질 함입률과 198.3±13.8 nm 크기의 나노입자를 얻었다. 입자로부터 효소의 방출은 첫 방출시기에 매우 빠르게 일어났으며 12일 내에 83%가 방출되었다. 이에 따른 방출되는 효소의 활성은 6일째까지 증가되었다.
The preservation of biological activity of protein drugs in formulation is still a major challenge for successful drug delivery. Lipase was encapsulated in poly(D,L-lactide-co-glycolide) PLGA nanoparticles using a w/o/w solvent evaporation technique. The lipase-containing PLGA/poly(vinyl alcohol) (PVA) nanoparticles were characterized with regard to morphology, size, size distribution, lipase-loading efficiency, in vitro lipase release, and stability of lipase activity. The size of nanoparticles increased as polymer concentration was increased. The size of particles was not significantly affected by the PVA concentration; on the other hand, the particle size distribution was the narrowest when 4% of PVA was used. In optimum conditions, we possessed nanoparticles that characterized 72.6% of encapsulation efficiency, 198.3±13.8 nm size diameter. During the initial burst phase, the in vitro release rate was very fast, reaching 83% within 12 days. Until days 6, enzyme activity increased as the amount of lipase released was increased.
  1. Janatuinen EK, Pikkarainen PH, Kemppainen TA, Kosma VM, Jarvinen RM, Uusitupa MI, Julkunen RJ, N. Engl. J. Med., 333, 1033 (1995)
  2. Hickey T, Kreutzer D, Burgess DJ, Moussy F, J. Biomed. Mater. Res., 61, 80 (2002)
  3. Cohen AM, Rosenmann E, Horm. Metab. Res., 22, 511 (1990)
  4. Emerich DF, Tracy MA, Ward KL, Figueiredo M, Qian R, Henschel C, Bartus RT, Cell. Transplant., 8, 47 (1999)
  5. Branon Papper L, Int. J. Pharm., 116, 1 (1995)
  6. Shive MS, Anderson JM, Adv. Drug. Deliv. Rev., 28, 5 (1997)
  7. Gorner T, Gref R, Michenot D, Sommer F, Tran MN, Dellacherie E, J. Control. Release, 57, 259 (1999)
  8. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM, Chem. Rev., 99(11), 3181 (1999)
  9. Jain RA, Biomaterials, 21, 2475 (2000)
  10. Lee SJ, Park YJ, Park SN, Lee YM, Seol YJ, Ku Y, Chung CP, J. Biomed. Mater. Res., 55, 295 (2001)
  11. EliazKost RE, J. Biomed. Mater. Res., 50, 388 (2000)
  12. Bala I, Hariharan S, Kumar MN, Crit. Rev. Ther. Drug Carr. Syst., 21, 387 (2004)
  13. Feng SS, Mu L, Win KY, Huang G, Curr. Med. Chem., 11, 413 (2004)
  14. Lockman PR, Mumper RJ, Khan MA, Allen DD, Drug. Dev. Ind. Pharm., 28, 1 (2002)
  15. Khang G, Jeon JH, Cho JC, Lee HB, Polym.(Korea), 23(3), 471 (1999)
  16. Oster CG, Wittmar M, Unger F, Barbu-Tudoran L, Schaper AK, Kissel T, Pharm. Res., 21, 927 (2004)
  17. Park KS, Kim SM, Kim MS, Lee I, Rhee JM, Lee HB, Khang G, Polym.(Korea), 30(5), 445 (2006)
  18. Panyam J, Lof J, O'Leary E, Labhasetwar V, J. Drug. Target., 10, 515 (2002)
  19. An TK, Kang HJ, Moon DS, Lee JS, Seong H, Jeong JK, Khang G, Lee HB, Polym.(Korea), 26(5), 670 (2002)
  20. Chiba M, Hanes J, Langer R, Biomaterials, 18, 893 (1997)
  21. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y, Int. J. Pharm., 187, 143 (1999)
  22. Kwon YW, Baudys M, Knutson K, Kim SW, Pharm. Res., 18, 1754 (2001)
  23. Yang YY, Chung TS, Ng NP, Biomaterials, 22, 231 (2001)
  24. Sanders LM, Kell BA, Mcrae GI, Whitehead GW, J. Pharm. Sci., 75, 356 (1986)