화학공학소재연구정보센터
Polymer(Korea), Vol.31, No.5, 454-459, September, 2007
효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성
Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery
E-mail:,
초록
본 연구에서는 folic acid(FA)가 복합화된 저분자량 수용성 키토산(LMWSC) 나노입자(water soluble chitosan-folic acid nanoparticle, WSCFA)를 제조하고, 또한 DNA와 나노복합체 합성 및 특성을 분석함으로써 in vitro에서 세포내 독성을 평가하였다. WSCFA 합성을 확인하기 위하여 분광학적 분석 방법을 사용하여 분석하였으며, WSCFA 나노입자는 110 nm 이하의 입자 크기인 구형의 형태를 가지고 있음을 알 수 있었다. In vitro 세포내 독성 실험에서, WSCFA-DNA 복합체는 세포내 독성을 전혀 나타내지 않음으로 높은 세포 생존율을 보여주었다. 전기영동 실험을 통해 WSCFA의 DNA 응축능력을 확인하였고, in vitro에서의 전이효율은 형광 광도계에 의해 평가하였다.
Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In 1H-NMR spectra, specific peaks appeared both of FA and LMWSC in D2O. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. In vitro transfection efficiency was assayed by fluorescence spectroscopy. WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.
  1. Kevin RS, Gene Ther., 34, 247 (2003)
  2. Marshall E, Science, 269(5227), 1050 (1995)
  3. Morimoto K, Nishikawa M, Kawakami S, Nakano T, Hattori Y, Fumoto S, Yamashita F, Hashida M, Mol. Ther., 7, 254 (2003)
  4. Brown MD, Schatzlein AG, Uchegbu IF, Int. J. Pharm., 229, 1 (2001)
  5. Choi C, Jang MK, Nah JW, Polym.(Korea), 30(4), 279 (2006)
  6. Muzzarelli RAA, Natural chelating polymers, Pergamon Press, Oxford, p 83 (1973)
  7. Brine CJ, Sanford PA, Zikakis JP, Advances in Chitin and Chitosan, Elsevier Applied Science, London, p30 (1992)
  8. Skjak-Braek G, Anthonsen T, Sanford P, Chitin and Chitosan, Elsevier Applied Science, London, p 30 (1989)
  9. Kim CH, Park HS, Gin YJ, Son YS, Lim SH, Choi YJ, Park KS, Park CW, Macromol. Res., 12(4), 367 (2004)
  10. Shigemasa Y, Sashimoto H, Azuma I, Chitin Derivatives in Life Science, Japanese Society for Chitin/Chitosan, p 86 (1992)
  11. Ikeda I, Sugano M, Yoshida K, Sasaki E, Iwamoto Y, Hatano K, J. Agric. Food Chem., 41, 431 (1993)
  12. Muzzarelli RAA, Lough C, Emanuelli M, Cabohydr. Res., 8, 433 (1987)
  13. Jang MK, Jeong YI, Cho CS, Yang SH, Kang YE, Nah JW, Bull. Korean Chem. Soc., 23, 914 (2002)
  14. Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
  15. Caliceti P, Salmaso S, Semenzato A, Carofiglio T, Fornasier R, Fermeglia M, Ferrone M, Pricl S, Bioconjugate Chem., 14, 899 (2003)
  16. Wang S, Lee RJ, Mathias CJ, Green MA, Low PS, Bioconjugate Chem., 7, 56 (1996)
  17. Kamruzzaman Selim KM, Lee JH, Kim SJ, Xing Z, Kang IK, Chang Y, Guo H, Macromol. Res., 14(6), 646 (2006)