화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.5, 729-734, September, 2007
Corrosion Behavior of Superalloys in a Hot Lithium Molten Salt
E-mail:
The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment for handling a molten salt. In this study, corrosion behaviors of Haynes 263, Inconel 718, Nimonic 80 A and Incoloy 800 H in a molten LiCl-Li2O salt under an oxidizing atmosphere were investigated at 650 ℃ for 72 216 h. Haynes 263 alloy showed the ∼ highest corrosion resistance among the examined alloys. Corrosion products of Haynes 263 were Li(Ni,Co)O2 and Li((Cr,Al)TiO4), and those of Inconel 718 were Cr2O3, NiFe2O4, and CrNbO4, while Cr2O3, LiFeO2, (Cr,Ti)2O3, and Li2Ni8O10 were identified as the corrosion products of Nimonic 80 A. Incoloy 800 H showed Cr2O3 and FeCr2O4 as its corrosion products. Haynes 263 showed a localized corrosion behavior while Inconel 718, Nimonic 80 A and Incoloy 800 H showed a uniform corrosion behavior.
  1. Kohl FJ, Santoro GJ, Stearns CA, Fryburg GC, Rosner DE, J. Electrochem. Soc., 126, 1054 (1979)
  2. Kameswari S, Oxid. Met., 26, 33 (1973)
  3. Rahmel A, Engell HJ, Corrosion, 18, 320 (1969)
  4. Spiegel M, Biedenkipf P, Grabke HJ, Corrosion Sci., 39, 1193 (1997)
  5. Mitsushima S, Kamiya N, Ota KI, J. Electrochem. Soc., 137, 2713 (1990)
  6. Kochergin MM, Stolyarava GI, J. Appl. Chem. USSR, 29, 789 (1956)
  7. Copson HR, J. Electrochem. Soc., 100, 257 (1953)
  8. Colom F, Bodalo A, Corrosion Sci., 12, 73 (1972)
  9. Smyrl WH, Blanckburn MJ, Corrosion, 31, 370 (1972)
  10. Gill CB, Staumanis ME, Schlechten WE, J. Electrochem. Soc., 102, 42 (1955)
  11. Izuta H, Komura Y, J. Jpn. Inst. Met., 58, 1196 (1994)
  12. Harada Y, Jpn. Therm. Spraying Soc., 33, 128 (1996)
  13. Smith WF, Structure and Properties of Engineering Alloys, 2nd ed., p. 485, McGraw-Hill, New York (1994)
  14. Park SH, Lee YD, Lee YY, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
  15. Caplan D, Cohen M, Corrosion, 15, 141 (1959)
  16. Tuck CW, Odgers M, Sachs K, Corrosion Sci., 9, 271 (1969)
  17. Kvernes I, Oliveira M, Kofstad P, Corrosion Sci., 17, 237 (1977)
  18. Davis HH, Graham HC, Krernes IA, Oxid. Met., 3, 431 (1971)
  19. Stott FH, Wood GC, Shida Y, Whittle DP, Bastow BD, Corrosion Sci., 21, 599 (1981)
  20. Skashita M, Sato N, Corrosion Sci., 17, 473 (1977)
  21. Crayton CR, Lu YC, Corrosion Sci., 29, 7 (1989)
  22. Turkdogan ET, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
  23. Ling S, Rahmel TA, Petkovic-Luton R, Oxid. Met., 40, 180 (1993)