화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.13, No.5, 793-798, September, 2007
Effects of Substrate Distance on Radiation Heat Transfer in Thermal CVD Reactor
E-mail:
The mass production of carbon nanotubes (CNTs) must be premised for actual life. Recently, many studies have been conducted to closely examine the thermal and flow fields inside of the reactor for mass production of CNTs. In this paper, the radiation heat transfer effect is numerically studied for the multiple substrates with respect to the substrate distance. The computational results show that when the substrate distance is close, the temperature andflow film is observed due to the radiationheat transfer effect of each substrate. As the substrate distance becomes larger the radiation heat transfer effect decrease. When the three substrates are ready to grow the CNTs, the substrate distance is required to be less than 40 mm. Also, the back side of the first substrate, the back and front sides of the second substrate and the front side of the third substrate can be used to grow the CNTs at the three substrates.
  1. Sauvajol JL, Anglaret E, Rols S, Journet C, Goze C, Bernier P, Munoz WK, Benito E, Martinez AM, Goddens G, Dianoux AJ, Synth. Met., 103, 2537 (1999)
  2. Hassanien A, Tokumoto M, Kumazawa Y, Kataura H, Maniwa Y, Suzuki S, Achiba Y, Appl. Phys. Lett., 73, 3839 (1998)
  3. Saito Y, Hamaguchi K, Hata K, Kasuya A, Nishina Y, Uchida K, Tasaka Y, Ikazaki F, Ymura M, Ultramicroscopy, 73, 1 (1998)
  4. Che GL, Lakshmi BB, Fisher ER, Martin CR, Nature, 393(6683), 346 (1998)
  5. Nutzenadel C, Zuttel A, Chartouni D, Schlapbach L, Electrochem. Solid State Lett., 2, 30 (1999)
  6. Hussein S, Zein S, Mohamed AR, Sai PST, Zabidi NAM, J. Ind. Eng. Chem., 10(6), 869 (2004)
  7. Oh SD, Choi SH, Lee BY, Gopalan A, Lee KP, Kim SH, J. Ind. Eng. Chem., 12(1), 156 (2006)
  8. Yoon KR, J. Ind. Eng. Chem., 12(4), 639 (2006)
  9. Iijima S, Ajayan PM, Ichihashi T, Phys. Rev. Lett., 69, 3100 (1992)
  10. Kazunori K, Rodney A, Eric AG, Kozo S, Carbon ’01 International Conference on Carbon, Proceedings CD, Lexington, KY (2001)
  11. Lu SY, Lin HC, Lin CH, J. Cryst. Growth, 200, 527 (1999)
  12. Ji W, Lofgren PM, Hallin C, Gu CY, Zhou G, J. Cryst. Growth, 220, 560 (2000)
  13. Kim YH, Lee YS, Lee DW, Rhee GH, J. Ind. Eng. Chem., 11(3), 465 (2005)
  14. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G, Science, 274(5293), 1701 (1996)
  15. CD adapco Group, Star-CD Methodology, Computational Dynamics Limited, Chapter 9 (2001)
  16. Jeong HJ, Jeong SY, Shin YM, Han JH, Lim SC, Eum SJ, Yang CW, Kim NG, Park CY, Lee YH, Chem. Phys. Lett., 361, 189 (2002)
  17. Modest MF, Radiative Heat Transfer, McGraw-Hill, Highstown, NJ (1993)
  18. Frank PI, David PD, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Inc., New York (2002)
  19. Edwards DK, Liley PE, Maddox RN, Matavosian R, Pugh SF, Schunck M, Schwier K, Shulman ZP, Heat Exchanger Design Handbook Physical Properties, Hemisphere Publishing Corporation, Washington, New York, London (1983)