화학공학소재연구정보센터
Polymer(Korea), Vol.15, No.4, 489-496, August, 1991
디알릴 에테르와 무수 말레인산 공중합체의 합성 특성 결정및 생물활성
Synthesis, Characterization and Biological Activity of Poly(diallyl ether-co-maleic anhydride)
초록
Diallyl ether(DAE)와 maleic anhydride:(MAH)를 용매로서 벤젠을 사용하여 60℃에 서 라디칼 공중합을 하였다. 중합체들의 특성은 IR. NMR, GPC 및 TGA등으로 결정하였으며, 중합체내의 단량체조성은 원소분석으로 구하였다. 공중한체는 교호구조를 가지며, 공중합시 두 단량체간에는 UV스펙트럼에 의해 charge-transfer complex가 형성됨을 확인하였로, 이때의 평형상수값은 0.74 liter/mole이었다. 공중합체의 생물학적인 활성은 K562 세포에 대한 공중합체 자체의 세포독성과 공중합체로 처리된 림프구의 자연세포 살해능으로써 조사하였다. 그 결과 공중합체 자체는 1.0mg/ml농도 이하에서 세포독성이 없었으나 림프구의 자연세포 살해능을 활성화시키는 효과를 보였으며, 자연세포 살해능은 공중합체 농도가 증가할수록 증가하였다.
Copolymerization of diallyl ether(DAE) and maleic anhydride(MAH) were carried out in benzene at 60℃ with 2,2''-Azobisisobutyronitrile(AIBN). The copolymers were characterized by IR and NMR spectroscopy, GPC and TGA. The copolymer composition was determined by elemental analysis. The copolymer had alternating structure. The formation of charge-transfer(CT) complex was identified during the copolymerization of DAE, and MAH, where the equilibrium constant of the CT complexation was estimated as 0.74 liter/mole. For biological activity, the cytotoxicity of the copolymer obtained and natural killer(NK) activity of th(: polymer-treated Lymphocytes on cells were evaluated with K562 leukemia cell line. It was found that the copolymer showed no cytotoxicity below the concentration of 1.0 mg/ml but augmented NK activity of lymphocytes. It was also observed that the cytotoxicity was increased with increasing amount of the copolymer.
  1. Breslow DS, Pure Appl. Chem., 46, 103 (1976)
  2. Chirigos MA, Jurner W, Pearson J, Griffin W, Int. J. Cancer, 4, 267 (1969)
  3. Declerg E, Merigan TC, J. Gen. Virol., 5, 359 (1969)
  4. Puccetti P, Santoni A, Riccardi C, Holden HT, Herberman RB, Int. J. Cancer, 24, 819 (1979)
  5. Santoni A, Riccardi C, Barlozzari T, Herberma RB, Int. J. Cancer, 26, 837 (1980)
  6. Barton JM, Butler GB, Chapin EC, J. Polym. Sci. A: Polym. Chem., 3, 501 (1965)
  7. Butler GB, Vanhaeren G, Ramadier M, J. Polym. Sci. A: Polym. Chem., 5, 1265 (1965)
  8. Butler GB, Jorce KC, J. Polym. Sci. C: Polym. Lett., 22, 45 (1968)
  9. Aso C, Sogabe M, Kogyo Kagaku Zasshi, 68, 1970 (1965)
  10. Walling C, Briggs E, Wolfstirn K, Mayo FR, J. Am. Chem. Soc., 70, 1537 (1948) 
  11. Walling C, Briggs E, Wolfstirn K, Mayo FR, J. Am. Chem. Soc., 70, 1544 (1948) 
  12. Sammuels RJ, Polymer, 18, 452 (1977) 
  13. Kojima K, Iwabuchi S, Watanabe Y, Nakahira T, J. Polym. Sci. A: Polym. Chem., 17, 1271 (1979)
  14. Kuresevic V, Vukovic V, Fles D, J. Polym. Sci. A: Polym. Chem., 17, 1839 (1979)
  15. Vosberg WC, Cooper GB, J. Am. Chem. Soc., 63, 437 (1941) 
  16. Scott RL, Rec. Trav. Chim. Pays-Bas, 75, 787 (1956)
  17. Benesi HA, Hildebrand JH, J. Am. Chem. Soc., 71, 2703 (1949) 
  18. Butler GB, Fujimori K, J. Macromol. Sci.-Chem., A6(8), 1533 (1972)
  19. Riddick JA, Toops EE, Eds., Organic Solvents, 2nd ed. (Technique of Organic Chemistry, Vol. 7), Interscience (1955)