화학공학소재연구정보센터
Current Applied Physics, Vol.5, No.6, 633-639, 2005
Organic LED device based on PtOEP phosphor without doping in host material
Electroluminescence (EL) and photoluminescence (PL) have been studied on multi-layer organic light-emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) molecule. A multi-layer OLED (called Pt5) which has 100% PtOEP without doping in host as the emitting layer is investigated and compared its EL and PL characteristics with those of the other OLEDs (Pt2 and Pt3) with emitting layer of PtOEP doped in 4,4'-N,N'-dicarbazole-biphenyl (CBP) host material. It is observed that Pt5 shows a lower EL efficiency than Pt2 and Pt3. Three broad EL bands are observed at 500, 527 and 570 nm in the multi-layer device in addition to red sharp EL band due to PtOEP in Pt5, while only the red PtOEP EL is observed in Pt2 and Pt3. The 500, 527 and 570 nm EL peaks arise from absorption of the broad 525 nm Alq(3) emission band by PtOEP layer. The emission from the Alq3 electron-transport layer is caused by the carrier leakage from the hole-blocking BAlq layer. The intensity of red EL due to PtOEP is much weaker in Pt5 than in Pt2. Taking into account the result of PL, it is suggested that highly efficient energy transfer from CBP host to PtOEP guest occurs in Pt2 and Pt3, giving rise to higher PtOEP luminance, while concentration quenching occurs in PtOEP layer in Pt5. (C) 2004 Elsevier B.V. All rights reserved.