Advanced Powder Technology, Vol.18, No.3, 311-327, 2007
Experimental study and particle population modeling of coating in a jet-fluidized bed
The present work focuses on the study of a bottom-spray fluidized-bed coater in the absence of any liquid (solvent) evaporation. The main objective is to point out and model the effect of operating conditions on the coating efficiency and the coating mass content distribution of particles. A fluidized bed with a bottom-placed spraying nozzle situated in the middle of a perforated distributor plate was used. The experimental results showed that increasing the jet and fluidizing gas flow rates improve the quality of coating, but there is a limitation for the binder flow rate which is dependent on the bed size and jet gas flow rate. Based on the experimental results, an empirical function was derived to predict the coating efficiency in different operating conditions and this function was also used in the mathematical model. Furthermore, a mathematical model was derived based on the population balance equations for two different zones in the bed. The model could predict the coating mass content distribution and the effect of different operating conditions during the process.