화학공학소재연구정보센터
Polymer(Korea), Vol.18, No.2, 142-149, March, 1994
폴리에스테르이미드의 합성과 그 열적 특성
Syntheses and Thermal Properties of Polyesterimides
초록
폴리에스테르이미드를 합성하기 위하여 에스테르기를 함유한 두가지 디아민인 3'-아미노페닐-4-아미노벤조에이트(PBMA), 비스(3-아미노페닐)테 레프탈에이트(MPTA)와 pyromellitic dianhydride(PMDA)로부터 폴리아미드산을 각각 저온 용액 축중합하였다. 에스테르 연결기가 열적 특성에 미치는 영향을 에테르기나 카르보닐기를 갖는 폴리이미드와 비교 검토하였다. 동적 적외선 분광 분석법(dynamic infrared spectroscopic method)에 의한 경화 속도 고찰로부터 에스테르기, 카르보닐기, 에테르기를 함유한 순서로 이미드화가 진행됨을 알 수 있었다. 또한 자외선 처리에 의해 Photo-Fries 전위를 일으킨 폴리아미드산 필름은 미처리 필름보다 이미드화 반응이 서서히 진행되었다. 방향족 폴리이미드의 주쇄에 에스테르기가 도입시 고분자간의 상호 작용력이 커서 Tg는 카르보닐이나 에테르 연결기를 갖는 폴리이미드보다 높게 나타났지만 열분해 내열성은 다소 떨어졌다.
Polyesterimides were synthesized by low-temperature solution condensation of two diamines such as 3'-aminophenyl-4-aminobenzoate (PBMA) and bis(3-aminophenyl) terephthalate(MPTA) with pyromellitic diahydride(PMDA). Thermal properties of polyesterimides were compared to polyimides containing ether or carbonyl linkages. The curing kinetics analyses by dynamic infrared spectroscopic methods showed that the imidization rates of polyesterimides were faster than those of polyimides containing ether or carbonyl linkages. And the imidization of UV-treated polyamic acid in which Photo-Fries rearrangement occurred was slower than that of untreated polyamic acid. Aromatic polyesterimides showed higher Tg's due to increased intermolecular interactions by ester groups, whereas they exhibited decreased thermal degradation stability.
  1. Goosey MT, "Plastic for Electronics," ed. by Martn T. Goosey, Elsevier Applied Science Publishers, London and New York (1986)
  2. Lupinski JH, Moore RS, "Polymeric Materials for Electronics Packaging and Inter-connection," ed. by John H. Lupinski and Roberst S. Moore, ACS, Washington, D.C. (1989)
  3. Mukai K, Saiki A, Yamanaka K, Harada S, Shoji S, IEEE J. Solid-State Circuits, SC-13, 462 (1978) 
  4. Pottiger MT, Solid State Technol., December, SI-S4 (1989)
  5. "Polymers for Microelectronics," ed. by Y. Tabata, I. Mita, S. Nonogaki, K. Horie, and S. Tagawa, pp. 789-844, Kodansha, Tokyo (1990)
  6. Lee HR, Lee YD, J. Polym. Sci. A: Polym. Chem., 27, 1481 (1989) 
  7. Crivello JV, Lee JL, Conlon DA, J. Polym. Sci. A: Polym. Chem., 25, 3293 (1987) 
  8. Bolon DA, Hallgren JE, Eddy VJ, Codella PJ, Davis GC, Regh KA, "Polyimides: Materials, Chemistry and Characterization," ed. by C. Feger, M.M. Khojasteh, and J.E. McGrath, pp. 103-114, Elsevier, Amsterdam (1989)
  9. Wilson D, Stenzenberger HD, Hergenrother PM, "Polyimides," p. 235, Blackie, London (1990)
  10. Turner SR, Arcus RA, Houle CG, Schleigh WR, Polym. Eng. Sci., 26(16), 1096 (1986) 
  11. Furniss BS, Haannaford AJ, Roger V, Smith PWG, Tatchell AR, "Vogel's Textbook of Practical Organic Chemistry," p. 1103, The English Language Book Society and Longman, London (1978)
  12. Bell VL, J. Polym. Sci. A: Polym. Chem., 14, 2275 (1976)
  13. Snyder RW, Sheen CW, Appl. Spectroscopy, 42(2), 296 (1988) 
  14. Snyder RW, Sheen CW, Appl. Spectroscopy, 42(4), 655 (1988) 
  15. Snyder RW, Sheen CW, Painter PC, Appl. Spectroscopy, 42(3), 503 (1988) 
  16. Ginsburg R, Susko JR, "Polyimides: Synthesis, Characterization and Applications," ed. by K.I. Mittal, pp. 237-247, Plenum Press, New York (1984)
  17. Wilson D, Stenzenberger HD, Hergenrother PM, "Polyimides," pp. 18-28, Blackie, London (1990)
  18. Pryde CA, J. Polym. Sci. A: Polym. Chem., 27, 711 (1989) 
  19. Fryd M, "Polyimides: Synthesis, Characterization and Applications," ed. by K.L. Mittal, pp. 377-383, Plenum Press, New York (1984)