화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.19, No.2, 214-221, April, 2008
산성도가 다른 제올라이트 촉매에서 전이에스터화 반응에 의한 폐식용유로부터 바이오디젤 제조
Production of Biodiesel from Waste Frying Oil by Transesterification on Zeolite Catalysts with Different Acidity
E-mail:
초록
산성도와 세공구조가 다른 제올라이트 촉매에서 폐식용유의 전이에스터화 반응에 의해 바이오디젤을 제조하였다. H+ 이온 교환한 MOR, MFI, BEA, FAU 제올라이트와 산점이 거의 없는 실리카라이트 촉매의 반응 수율을 조사하였다. 산세기가 가장 강하고 산점이 많은 H+ 이온 교환한 MOR(10) 제올라이트에서 메틸에스터 수율이 약 95%로 가장 높았다. 제올라이트 골격에서 알루미늄을 제거하면 산점의 수가 줄어들고 산세기도 약해지면서 메틸에스터 수율도 감소하였다. 폐식용유의 전이에스터화 반응에서 메틸에스터의 수율은 제올라이트 촉매의 산세기와 산량에 따라 비례하는 것으로 나타났다. 메틸에스터의 수율은 제올라이트의 세공구조에는 영향을 받지 않는 것으로 조사되었다.
The production of biodiesel by transesterification of waste frying oil was conducted on various zeolite catalysts with different acidity and pore structure. H+ ion exchanged MOR, MFI, FAU, and BEA zeolites were employed in the reaction with silicalite which has no strong acid sites. H+ ion exchanged MOR(10) zeolite, which has more acid sites and stronger acid strength than other zeolites, exhibited the highest methyl esters yield as 95%. Dealumination to the HMOR zeolite induced decreasing of acid amount and acid strength. It brought about the decrease of fatty acid methyl esters (FAME) yield. The yield increased linearly with enhancing of acid strength and increasing of amount of strong acid sites. The yields were independent on pore structure of the zeolites.
  1. Hiroaki W, ENEOS Technical Review, 47, 11 (2005)
  2. Kim SS, Kim KH, Shin SC, Yim ES, J. Korean Ind. Eng. Chem., 18(5), 401 (2007)
  3. Jung CS, Dong JI, J. Korean Ind. Eng. Chem., 18(3), 284 (2007)
  4. Zhang Y, Dube MA, McLean DD, Kates M, Bioresour. Technol., 89(1), 1 (2003)
  5. Freedman B, Pryde EH, Mounts TL, J. Am. Oil Soc. Chem., 61, 1638 (1984)
  6. Freedman B, Butterfield R, Pryde EH, J. Am. Oil Soc. Chem., 63, 1375 (1986)
  7. Canakei M, Gerpen JV, Am. Soc. Agric. Eng., 42, 1203 (1999)
  8. Knothe G, Krahl J, Van Gerpen J, The biodiesel handbook, Champaign (IL): AOCS press (2005)
  9. Kim YJ, Kim DK, Rhee YW, Park SC, Lee JS, Korean Chem. Eng. Res., 43(5), 621 (2005)
  10. Suppes GJ, Dasari MA, Doskocil EJ, Mankidy PJ, Goff MJ, Appl. Catal. A: Gen., 257(2), 213 (2004)
  11. Lee JS, News Inf. Chem. Eng., 25, 613 (2007)
  12. Robson H, Verified Syntheses of Zeolitic Materials, 118-212. Elsevier, New York (2001)
  13. Rimer JD, Kragten DD, Tsapatsis M, Lobo R, Valchos D, Stud. Surf. Sci. Catal., 154, 317 (2004)
  14. Meier WM, Olson DH, Baerlocher C, Atlas of Zeolite Structure Types, 63, Elsevier, New York (1996)
  15. van Gerpen J, shanks B, Pruszko R, Clements D, Knothe G, Biodiesel Analytical Methods, NREL/SR-510-36240
  16. www.astm.org
  17. Roboson H, Lillerud KP, Verified syntheses of zeolitic materials, Elsevier, Amsterdam (2001)
  18. Miyamoto Y, Katada N, Niwa M, Microporous Mesoporous Mater., 40, 271 (2000)
  19. Niwa M, Nishikwa S, Kadata N, Microporous Mesoporous Mater., 82, 105 (2005)
  20. Kukulska-Zajae E, Gora-Marek K, Datka J, Microporous Mesoporous Mater., 96, 216 (2006)
  21. Marchetti JM, Miguel VU, Effazu AF, Renew. Sust. Energ. Rev., 11, 1300 (2007)
  22. Kaeding WW, Chu C, Young LB, Butter SA, J. Catal., 67, 192 (1981)
  23. Chung KH, Komatsu T, Namba S, Yashima T, Microporous Mesoporous Mater., 3, 377 (1995)