화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.2, 348-355, April, 2008
바이오에탄올 회수를 위한 에너지 절약형 공비증류공정과 추출증류공정
Process Design of Low Energy Azeotropic and Extractive Distillation Process for Bioethanol Recovery
E-mail:
초록
청정대체에너지로 관심이 고조되고 있는 바이오에탄올의 경제적 생산은 고유가시대에 있어 매우 중요하다. 본 연구 에서는 곡물의 주정발효를 통해 얻어진 바이오 에탄올의 회수공정에 대하여 공장설계를 위한 열역학적 해석을 통해 신뢰성 있는 공정모사결과를 얻을 수 있도록 하고, 본 모델을 통하여 매우 성공적으로 운전이 되어 제품을 생산할 수 있고 향후 공정개선에 대한 기초를 마련했다. 연료용 무수에탄올 생산 공정은 실제공정에서 사용되고 있는 기술은 공비증류, 추출증류, 압력스윙 흡착공정 등이 있다. 본 연구에서는 추출증류 공정에 대한 공정모사를 통해 경제성 및 영향성을 평가해보았다. 에틸렌글리콜을 이용한 추출증류에 대한 공정연구는 매우 에너지 효율적이고 무수에탄올 생산에 있어 에틸렌글리콜을 이용한 추출증류는 발효 불순물의 영향을 받지 않음을 확인할 수 있었다. 이는 공비증류와 비교할 때 가장 큰 차이를 보이는 것으로 무수에탄올 회수에 있어 다양한 구성이 가능하며, 에탄올의 회수율을 극대화할 수 있다는 장점을 갖는다. 또한 공비를 제거하기위한 에틸렌글리콜 등의 첨가제는 공정의 성분들과 끓는점의 차이가 높고 서로의 용해도가 낮아서 공정중에 거의 100% 회수가 가능한 특징을 있고 공비증류에 비해 매우 환경친화적이다. 한편 개발된 공정에서는 매우 낮은 에너지(1.37198 kg steam/kg anhydride ethanol from 3.05 mol% ethanol)로 99.85%의 무수에탄올을 생산할 수 있으며, 본 연구의 결과 발효된 원료로부터의 무수에탄올의 생산은 공비를 제거하기위한 agent의 선택도 중요한 사항으로 첨가제에 따른 효율이나 에너지 필요량을 알아보았고 공정의 에너지를 절약하기 위해 공정을 효율적으로 구성하여 열회수를 극대화 할 수 있었다.
Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. The present dissertation is also designed with purpose of developing the energy-saving process for the separation of bio-ethanol. In order to illustrate the predictability of proposed process for the separation of bio-ethanol, the experimental data from literatures and real plant data are used. Application of the thermodynamics of multicomponent mixtures and phase equilibria to the extractive distillation process with syntheses of heat exchanger network has enabled the development of energy-saving process for different separating agents. Developed process is capable of minimizing the energy usage and the environmental effect. This extractive process is also able to properly describe the effect of impurities, the choice of separating agent. Simulation results of extractive distillation using ethylene glycol show that impurities do not affect to extractive distillation operation and agent, ethylene glycol, was recycled without any loss. It is possible that extraction distillation has various heat network for anhydride ethanol and recovery of ethanol is maximized. Ethylene glycol as separating agent has a high boiling point to eliminate azeotropic point and on the contrary solubility of agent is low to be almost completed recovered. Proposed process is also the energy efficient process configuration in which 99.85mole% anhydride ethanol can be produced with low energy of 1.37198 (kg steam/kg anhydride ethanol).
  1. Kim JH, Yoo YJ, HWAHAK KONGHAK, 30(1), 65 (1992)
  2. Maczynski A, version 1994-2.0, TRC (1994)
  3. Messick JR, Ackley WR, Moon GD, U.S.Pat. US4,422,903, Dec. (1983)
  4. Lynn S, Hanson DN, Ind. Eng. Chem. Process Des. Dev., 25(4), 936 (1986)
  5. Knapp JP, U.S. Patent, US5,035,776 Jul. (1991)
  6. Carton A, Gonzlez G, Torre AI, Cabezas JL, J. Chem. Technol. Biotechnol., 39(2), 125 (1987)
  7. Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley, New York (1984)
  8. Lee FM, Pahl RH, U.S. Pat. US4,559,109, Dec. (1985)
  9. Cho JH, Korean Chem. Eng. Res., 44(2), 129 (2006)
  10. Doherty MF, Caldarola GA, Design and Synthesis of Homogeneous Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and Extractive Distillations. Industrial Engineering Chemistry Fundamentals, 24(4), 474 (1985)
  11. Muller D, Marquardt W, Ind. Eng. Chem. Res., 36(12), 5410 (1997)
  12. Castillo FJL, Towler GP, Chem. Eng. Sci., 53(5), 963 (1998)
  13. Safrit BT, Westerberg AW, Ind. Eng. Chem. Res., 36(5), 1827 (1997)
  14. Pham HN, Doherty MF, Chem. Eng. Sci., 45(7), 1845 (1990)
  15. Guttinger TE, Dorn C, Morari M, Ind. Eng. Chem. Res., 36(3), 794 (1997)
  16. Georgoulaki A, Korchinsky WJ, Trans IChemE, 75, Part A, January, 101-115 (1997)
  17. Glindemann D, Maskow T, Browarzik D, Kehlen H, Kutscha J, Fluid Phase Equilib., 135(2), 149 (1997)
  18. Wang CJ, Wong DSH, Chien IL, Shih RF, Liu WT, Tsai CS, Ind. Eng. Chem. Res., 37(7), 2835 (1998)
  19. Cho J, Jeon J, Korean Chem. Eng. Res., 43(4), 474 (2005)
  20. Cho J, Jeon JK, Korean J. Chem. Eng., 23(1), 1 (2006)