화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.2, 397-401, April, 2008
마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발
Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter
E-mail:
초록
레이저 애블레이션에 의해서 가지상 구조체 형상인 나노입자 응집체를 합성하였다. 기존 마이크론 금속섬유 필터의 표면상에 나노입자 응집체를 고착하여 여과성능을 향상시켰다. 에어로졸 상에서 소결 처리된 나노입자 응집체를 증착한 후 열처리를 하여 나노구조체가 표면상에 형성된 소결 처리된 나노입자 응집체 고착 필터를 제작하였다. 소결 온도가 증가할수록 마이크론 금속섬유 필터 표면상에 고착된 나노입자 응집체의 표면적 증가로 인하여 차압은 조금 증가 하지만 여과효율은 현저하게 증가하였다.
The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.
  1. Cao G, Imperial College Press (2004)
  2. Subramania G, Constant K, Biswas R, Sigalas MM, Ho KM, J. Lightwave Technol., 17(11), 1970 (1999)
  3. Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, J. Am. Chem. Soc., 110(10), 3046 (1988)
  4. Houriet R, Vacassy R, Hofmann H, Von Kaenel Y, Hofmeister W, Carbon, 39(9), 1425 (2001)
  5. Houriet R, Vacassy R, Hofmann H, Vogel W, Mater. Res. Soc. Symp. Proc., 526, 117 (1998)
  6. Houriet R, Vacassy R, Hofmann H, Nanostruct. Mater., 11(8), 1155 (1999)
  7. Megaridis CM, Dobbins RA, Combust. Sci. Technol., 71(1-3), 95 (1990)
  8. Davies CN, New York: Academic Press (1973)
  9. Hinds WC, New York: John Wiley & Sone (1982)