화학공학소재연구정보센터
Clean Technology, Vol.13, No.4, 266-273, December, 2007
석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구
The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas
E-mail:
초록
본 연구에서는 석탄가스화 복합발전시스템용 고온건식탈황공정에 포함된 직접황회수공정의 SO2 촉매환원 반응에서 발생되는 COS의 효과적인 제거를 위한 활성탄계 흡착제의 흡착특성이 연구되었다. SO2의 촉매적 환원을 위하여 전이금속 담지촉매와 복합금속산화물 촉매가 사용되었으며, 이들 촉매의 반응기구에 따라 COS 생성과정과 반응온도에 따른 유출량이 조사되었다. 생성된 저농도의 COS를 효과적으로 제거하기 위하여 상용활성탄과 활성탄의 COS흡착특성을 개선하기 위하여 알칼리금속 수용액 (KOH)으로 담지시킨 활성탄이 이용되었다. TGA를 이용하여 온도에 따른 COS 흡착량과 흡착속도를 알 수 있었고, GC-PFPD가 장착된 고정층 흡착시스템을 이용하여 COS흡착실험을 수행한 결과, 높은 BET 표면적을 지니는 KOH로 처리된 활성탄의 COS 파과시간이 상용활성탄에 비해 장시간 유지되었다. 이와 같은 결과로부터 활성탄 흡착시스템으로 SO2 환원으로부터 생성되는 COS를 효과적으로 제거할 수 있으며 알칼리성 금속을 담지할 경우 흡착특성이 향상됨을 확인할 수 있었다.
The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from SO2 catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the SO2 catalytic reduction. The mechanism of COS produced from the SO2 reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the SO2 reduction.
  1. Ruth LA, Proceedings of Workshop on Clean Energy Utilization Technology, Seoul, Korea (2001)
  2. Federal Energy Technology Center, "Vision 21 Program Plan: Clean Energy Plants for the 21th Century", FETC Office of Fossil Energy, U.S. Department of Energy (1999)
  3. Kim JH, Park MJ, Kim SJ, Joo OS, Jung KD, Appl. Catal. A: Gen., 264(1), 37 (2004)
  4. Sun K, Lu W, Wang M, Xu X, Catal. Commun., 5, 367 (2004)
  5. Portzer JW, Dainle AS, Gangwal SK, Proceedings of the Advanced Coal-based Power and Environmental System 97 Conference July, 22-24 (1997)
  6. Ryu SO, Park NK, Chang CH, Kim JC, Lee TJ, Ind. Eng. Chem. Res., 43(6), 1466 (2004)
  7. Liu W, Wadia C, Flytzanistephanopoulos M, Catal. Today, 28(4), 391 (1996)
  8. Kim BS, Lee JD, Park NK, Ryu SO, Lee TJ, Kim JC, HWAHAK KONGHAK, 41(5), 572 (2003)
  9. Han GB, Park NK, Lee JD, Ryu SO, Lee TJ, Catal. Today, 111(3-4), 205 (2006)
  10. Haas LA, Khalafalla SE, J. Catal., 24, 115 (1972)
  11. Khalafalla SE, Haas LA, J. Catal., 24, 121 (1972)
  12. Haas LA, Khalafalla SE, J. Catal., 29, 264 (1973)
  13. Tschope A, Liu W, Flytzanistephanopoulos M, Ying JY, J. Catal., 157(1), 42 (1995)