화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.2, 166-174, March, 2008
Absorption of carbon dioxide into aqueous colloidal silica solution with diisopropanolamine
E-mail:
Carbon dioxide was absorbed into the aqueous nanometer-sized colloidal silica solution of 0-31 wt% and diisopropanolamine of 0-2 kmol/m(3) in a flat-stirred vessel with the impeller of various sizes and speeds at 25 degrees C and 0.101 MPa to measure the absorption rate of CO2. The volumetric liquid-side mass transfer coefficient (k(L)a) of CO2 was used to obtain the empirical correlation formula containing the rheological behavior of the aqueous colloidal silica solution. Reduction of the measured k(L)a was explained by the viscoelastic properties of the aqueous colloidal silica solution. The theoretical value of the absorption rate of CO2 was estimated from the model based on the film theory accompanied by chemical reaction and compared with the measured value. (C) 2007 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Astarita G, Savage DW, Bisio A, Gas Treatment with Chemical Solvents, John Wiley & Sons, New York (1983)
  2. Fan JM, Cui Z, Ind. Eng. Chem. Res., 44(17), 7010 (2005)
  3. Xu DM, Bai YF, Fu LZ, Guo JJ, Int. J. Heat Mass Transf., 48(11), 2219 (2005)
  4. Hozawa M, Inoue M, Sato J, Tsukada T, J. Chem. Eng. Jpn., 24, 209 (1991)
  5. Keblinski P, Phillpot SR, Choi SUS, Eastman JA, Int. J. Heat Mass Transf., 45(4), 855 (2002)
  6. Kim JK, Jung JY, Kang YT, Int. J. Refrig., 29, 22 (2006)
  7. Kars RL, Best RJ, Chem. Eng. Sci., 17, 201 (1979)
  8. Hikita H, Ishimi K, Ueda K, Koroyasu S, Ind. Eng. Chem. Process Des. Dev., 24, 261 (1985)
  9. Zhou M, Cai WF, Xu CJ, Korean J. Chem. Eng., 20(2), 347 (2003)
  10. Mehra A, Chem. Eng. Sci., 51, 461 (1995)
  11. Astarita G, Greco G, Nicodemo L, AIChE J., 15, 564 (1969)
  12. Nakanoh M, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 19, 190 (1980)
  13. Yagi H, Yoshida F, Ind. Eng. Chem. Process Des. Dev., 14, 488 (1975)
  14. Ranade VR, Ulbrecht JJ, AIChE J., 24, 796 (1978)
  15. Park SW, Sohn IJ, Park DW, Oh KJ, Sep. Sci. Technol., 38(6), 1361 (2003)
  16. Park SW, Choi BS, Lee BD, Park DW, Kim SS, J. Ind. Eng. Chem., 10(6), 1033 (2004)
  17. Park SW, Choi BS, Lee BD, Lee JW, Sep. Sci. Technol., 40(4), 911 (2005)
  18. Park SW, Choi BS, Kim SS, J. Ind. Eng. Chem., 12(2), 199 (2006)
  19. Park SW, Choi BS, Lee JW, Korea-Aust. Rheol. J., 18(3), 133 (2006)
  20. Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 43, 573 (1988)
  21. Kennard ML, Meisen A, J. Chem. Eng. Data, 29, 309 (1984)
  22. Nijsing RATO, Hendriksz RH, Kramers N, Chem. Eng. Sci., 10, 88 (1959)
  23. Hikita H, Asai S, Takatsuka T, Chem. Eng. J., 11, 131 (1976)
  24. Danckwerts PV, Sharma MM, Chem. Eng., 44, 244 (1966)
  25. Cussler EL, Diffusion, Cambridge University Press, New York, 1984, p. 118
  26. Metzner AB, Otter RE, Algorithmica, 3, 3 (1957)
  27. Sandall OC, Patel KG, Ind. Eng. Chem. Process Des. Dev., 9, 139 (1970)
  28. Perez JF, Sandall OC, AIChE J., 20, 770 (1974)
  29. Moo-Young M, Kawase Y, Can. J. Chem. Eng., 65, 113 (1987)
  30. Seyer FA, Metzner AB, AIChE J., 15, 426 (1969)