Clean Technology, Vol.14, No.3, 184-192, September, 2008
CFC 대체 산업세정제로의 HFEs의 적용가능성 연구
A Study on Applicability of Hydrofluoroethers as CFC-Alternative Cleaning Agents
E-mail:
초록
불소계 화합물인 삼불화에탄올(2,2,2-trifluoroethanol, TFEA)와 수소화불화에테르(hydrofluoroether, HFE)는 성층권의 오존층을 파괴하지 않으며, 수소화불화탄소(hydrofluorocarbon, HFC) 및 수소화염화불화탄소(hydrochlorofluorocarbon, HCFC)계 세정제에 비하여 지구온난화 영향력도 낮다. 특히, 인화점이 없는 HFE계 세정제는 낮은 인화점을 갖는 탄화수소계 세정제보다 취급에 안전하고 침투력이 우수하여 차세대 염화 불화탄소(chlorofluorocarbon, CFC) 대체세정제로 주목받고 있다. 본 연구에서는 불소계 세정제인 TFEA, HFE-7100, HFE-7200, HFE-476mec, HFE-449mec-f, AE-3000, AE-3100E와 실리콘계 세정제인 트리플 루로에톡시트리메틸실란(trifluoroetoxytrimethylsilane, TFES)와 헥사메틸디실라잔 (hexamethyldisilazane, HMDS)의 물성과 세정력을 오존파괴 물질인 CFC-113, 삼염화에탄(1,1,1-trichloroethane)와 유해물질인 이염화탄소(methylene chloride, MC) 등의 염소계 세정제, 그리고 현재 대체세정제로 많이 사용하고 있는 이소프로필알코올(isopropyl alcohol, IPA) 등과 비교 평가하였다. 그 결과 TFEA와 HFEs는 일반적으로 발생하는 다양한 오염물질들에 대하여 염소계 세정제에 비하여 낮은 세정능력을 보여주었지만, 불소를 함유한 불소계 오염물의 제거에는 우수한 세정력을 보였다. 그리고 실리콘계 세정제인 TFES와 HMDS도 실리콘계 오염물에 대한 세정력이 우수함을 보여주었다.
Fluoride-type cleaning agents such as 2,2,2-trifluoroethanol (TFEA) and hydrofluoroethers (HFEs) do not destroy ozone in the stratosphere and have low global warming potential compared to hydrofluorocarbons(HFCs) and hydrochlorofluorocarbons (HCFCs). Especially, HFEs which have no flash point are paid attention as next generation type of cleaning agents for chlorofluorocarbons (CFCs) since they are safe in handling and have excellent penetration ability compared to hydrocarbon cleaning agents with low flash point. Here, the physical properties and cleaning abilities of fluoride-type cleaning agents such as TFEA, HFE-7100, HFE-7200, HFE-476mec, HFE-449mec-f, AE-3000 and AE-3100E and silicide-type cleaning agents such as trifluoroetoxytrimethylsilane (TFES) and hexamethyldisilazane (HMDS) were measured and compared with those of ozone destruction substances such as CFC-113 and 1,1,1-trichloroethane. They were also compared with toxic methylene chloride (MC) and isopropyl alcohol (IPA) which are now being used as an alternative cleaning agents. As a result, TFEA and HFEs had lower cleaning ability for removal of various soils compared to chloride-type cleaning agents, but they showed excellent cleaning ability for fluoride-type soils. TFES and HMDS also showed excellent cleaning ability for silicide-type soils.
Keywords:2,2,2-Trifluoroethanol;Trifluoroetoxy-trimethyl-silane;Hexamethyldisilazane;Hydrofluoroethers;Alternative cleaning agents;Cleaning evaluation
- Bae JH, Prospect. Ind. Chem., 8(2), 25 (2005)
- Jung YW, “Evaluation of Cleaning Ability of Formulated CFC-Alternative Hydrocarbon-based Cleaning Agents and Their Application to Industrial Fields,” Master's Thesis, University of Suwon (2007)
- Bae JH, "Environmental-friendly Wet Cleaning Technology and Cleaning Mechanism," Seminar on CFC-alternative Technology, Korea Speciality Chemical Industry Association, (2006)
- http://multimedia.mmm.com/mws/mediawebserver.dyn?-6666660Zjcf6lVs6EVs6661oMCOrrrrQ-
- http://www.nedo.go.jp/english/publications/brochures/fy2003/index.htm.
- http://www.denix.osd.mil/portal/page/portal/denix/publications/source/Navy/Currents/2006/Spring/Spr06_HFE-71DE_Gauge_Cleaning.pdf
- Toxic Release Inventory Alternative Development (TRIAD) for Reliability and Maintainability of Warner Robins Air Logics Center Weapons Systems, Process and Alternative Evaluation Report, BLDG 169 Vapor Degreasing, WR-ALC/EMP (Jan. 2000)
- Song AR, "A Study on Applicability of Hydrofluoroethers as CFC-Alternative Cleaning Agents," Master's Thesis, University of Suwon, Korea (2007)
- Shin MC, Lee HY, Bae JH, J. Korean Ind. Eng. Chem., 11(8), 825 (2000)
- Park JH, Cha AJ, Kim HG, Bae JH, J. Korean Ind. Eng. Chem., 15(7), 773 (2004)
- Bae JH, Shin MC, Clean Technol., 5(2), 1 (1999)
- Kanegberg B, Sipikowski JM, Surface Cleaning Module, The Massachusetts Toxics Use Reduction Institute, University of Massachusetts at Lowell (1997)
- Cha AJ, Park JN, Kim H, Bae JH, J. Korean Ind. Eng. Chem., 16(4), 533 (2005)
- Kang JH, Chung ST, Row KH, HWAHAK KONGHAK, 39(4), 390 (2001)
- Row KH, Lee YY, HWAHAK KONGHAK, 31(6), 623 (1993)
- Jung YW, Lee HY, Bae JH, Clean Technol., 13(2), 143 (2007)
- Cha AJ, Park JN, Kim HS, Bae JH, Clean Tech., 6, 73 (2004)
- Park SW, Cha AJ, Kim HT, Kim HS, Bae JH, Clean Technol., 9(1), 9 (2003)
- Allan F. M. Bartin, Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed., CRC, 1991, pp. 169-185
- Brandrup J, Immergut EH, Grulke EA, Polymer Handbook, 4th ed., Wiley Interscience, 1999, pp. 671-716
- Hoftyzer PJ, Van Krevelen DW, Properties of Polymers, 2nd ed., Butterworth, London, 1976, p. 152
- Kabin JA, Saez AE, Grant CS, Carbonell RG, Ind. Eng. Chem. Res., 35(12), 4494 (1996)
- Lange KR, Detergents and Cleaners, Hanser Publishers, 1994. pp. 43-47
- Lee JW, Polymer, 12, 1 (1988)
- Park KH, Lee TW, Kim JD, Lee CH, Lim JS, Theories and Applications of Chem. Eng., 8, 3629 (2002)
- Park JN, Kim EJ, Jung YW, Kim H, Bae JH, Clean Technol., 11(3), 129 (2005)
- Row KH, Choi DK, Lee YY, Chem. Ind. Technol., 13(3), 283 (1995)
- Salager J, “Microemulsion," Handbook of Detergents, 253-302 (1998)
- Shin MC, “A Study on Field Application and Cleanliness Evaluation of Alternative Cleaning Agents,” Master Thesis, University of Suwon (1999)
- Korean Standards Association, “Testing Methods for Aniline Point and Mixed Aniline Point of Petroleum Products,” KS M 2053, Korean Standards Association (2004)
- Nynas Co, Naphthenics Magazine, 1, 14 (2006)