화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.46, No.5, 833-844, October, 2008
해양조류로부터 바이오에너지 생산: 현황 및 전망
Production of Bio-energy from Marine Algae: Status and Perspectives
E-mail:,
초록
바이오에너지는 화석연료의 소비를 감소시키는 기회를 제공한다. 태양, 바람, 수력발전 및 지열, 그리고 바이오매스 자원으로부터 생성된 에너지는 재생이 가능하다. 대부분의 바이오에너지들은 태양으로부터 직ㆍ간접적으로 생산되기 때문에 화석연료와 달리 신재생에너지의 충분한 공급이 가능하다. 또한 바이오에너지의 이용은 환경적인 측면 뿐 아니라 정치, 경제적으로 이익을 제공한다. 바이오에너지는 이산화탄소의 순증가가 없고 무공해의 에너지 형태를 제공하는 해양 자원으로부터 생산 될 수 있다. 본 총설에서는 지구의 약 75%가 바다로 이루어져 있음을 고려해 볼 때 바이오에너지 생산을 위한 해양 바이오매스의 잠재력에 대해 검토한다.
Bio-energy offers the opportunity to lessen fossil fuel consumption. Energy derived from solar, wind, hydroelectric, geothermal, and biomass sources are considered renewable. Because most forms of bio-energy are derive deither directly or indirectly from the sun, there is an abundant supply of renewable energy available, unlike fossil fuels. The use of bio-energy also provides environmental, economic and political benefits. Bio-energy can be produced from a marine source such as biomass provides a CO2 neutral, non-polluting form of energy. In this paper, the potential of marine biomass is increasingly discussed, given the size of the resource in that more than three quarters of the surface of planet earth is covered by water.
  1. Mclaren JS, Trends Biotechnol., 23, 339 (2005)
  2. Wright L, Biomass Bioenerg., 30(8-9), 706 (2006)
  3. Agarwal AK, Progr. Energ.Combust. Sci., 33, 233 (2007)
  4. Arnulf JW, “Status of PV Research, Solar Cell Production and Market Implementation in Japan, USA and European Union,” European Commission, Joint Research Center(2002)
  5. McNelis B, “The Photovoltaic Business: Manufacturers and Markets,” Electricity from Sunlight, IT Power, UK(1997)
  6. Demirbas A, Progr.Energ. Combust. Sci., 33, 1 (2007)
  7. Gereene N, “Growing Energy: How Biofuels can Help end America’s Oil Dependence,” Natural Resources Defense Council, New York(2004)
  8. Asif M, Muneer T, Rene. Sustain.Energ. Rev., 11, 1388 (2006)
  9. Kang SH, Choi SJ, Kim JW, Trans. of the Korean Hydrogen and New Energy Society, 18, 216 (2007)
  10. International Energy Outlood 2004, EIA (Energy Information Administration)(2004)
  11. Tolbert NE, in J. Preiss(Ed.), Regulation of atmosferic CO2 and O2 by photosynthetic Carbon Metabolism, Oxford University Press, Oxford, 8-33(1994)
  12. Chisti Y, Biotechnol. Adv., 25, 294 (2007)
  13. Huntley M, Redalje DG, Mitigation and Adaptation Strategies for Global Change, 12, 573 (2007)
  14. Li XF, Xu H, Wu QY, Biotechnol. Bioeng., 98(4), 764 (2007)
  15. Pulz O, Gross W, Appl. Microbiol. Biotechnol., 65(6), 635 (2004)
  16. Berndes G, Hoogwijk M, van den Broek R, Biomass Bioenerg., 25(1), 1 (2003)
  17. Kanetsuna Y, Phycological Research, 50, 101 (2002)
  18. Mchugh DJ, FAO.FAO Fish. Tech. Pap., 441, 105 (2003)
  19. Arne J, Hydrobiologia, 260, 15 (1993)
  20. Skjak-Bræk G, Martinsen A, in M. D. Guiry, G. Blunden (Ed.), Seaweed Resources in Europe: Uses and Potential, John Wiley & Sons, Chichester, UK, 219-257(1991)
  21. Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Ann. Rev., 26, 259 (1998)
  22. Percival E, British Phycological Journal, 14, 103 (1979)
  23. Costanza R, Darge R, Degroot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, Vandenbelt M, Nature, 387(6630), 253 (1997)
  24. Luning K, Pang SJ, J. Appl. Phycol., 15, 115 (2003)
  25. http://seaweed.ucg.ie.
  26. http://bio.sch.ac.kr/~hwshin/STUDYDATA.htm.
  27. Buck BH, Krause G, Rosenthal H, Ocean Coast. Manag., 47, 95 (2004)
  28. Buck BC, Buchholz CM, J.Appl. Phycol., 16, 355 (2004)
  29. Reith JH, Deurwaarder EP, Hemmes K, Curvers APWM, Brandeburg W, Zeeman G, “Bio-offshore: Grootschalige Teelt Van Zeewieren in Combinatie Met Offshore Windparken in de Noordzee,” ECN(2005)
  30. Chynoweth DP, “Review of Biomethane from Marine Biomass,” Ph. D. Dissertation, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida (2002)
  31. Reina GG, “Culture Collections and Herbaria in European Countries,” European Communities, Italy(1996)
  32. Munoz R, Guieysse B, Water Res., 40, 2799 (2006)
  33. Davis TA, Volesky B, Mucci A, Water Res., 37, 4311 (2003)
  34. Lee MG, Lim JH, Kam SK, Korean J. Chem. Eng., 19(2), 277 (2002)
  35. Yu Q, Kaewsarn P, Korean J. Chem. Eng., 16(6), 753 (1999)
  36. Lee JS, Lee JP, Biotechnol. Bioproc. Eng., 8, 354 (2003)
  37. Slesser M, Lewis C, Biological energy resources, John Wiley & Sons, New York(1979)
  38. Sheehan J, Dunahay T, Benemann J, Roessler P, “A Look Back at the U.S. Department of Energy’s Aquatic Species Program-biodiesel from Algae,” NREL/TP-580-24190. U.S. Department of Energy’s Office of Fuels Development(1998)
  39. Ben-Amotz A, Tornabene TG, J. Phycol., 21, 72 (1985)
  40. Banerjee A, Sharma R, Chisti Y, Banerjee UC, Crit. Rev. Biotechnol., 22, 245 (2002)
  41. Metzger P, Largeau C, Appl. Microbiol. Biotechnol., 66(5), 486 (2005)
  42. Xu H, Miao XL, Wu Q, J. Biotechnol., 126, 499 (2006)
  43. Kishimoto M, Okakura T, Nagashima H, Minowa T, Yokoyama S, Yamaberi K, J. Ferment. Bioeng., 78(6), 479 (1994)
  44. Tsukahara K, Sawayama S, J. Jpn. Petrol. Inst., 48, 251 (2005)
  45. Valenzuela-Espinoza E, Millan-Nunez R, Nunez-Cebrero F, Aquac. Eng, 25, 207 (2002)
  46. Negoro M, Shioji N, Miyamoto K, Miura Y, Appl.Biochem. Biotechnol., 28, 877 (1991)
  47. Hu Q, Zhang C, Sommerfeld M, J.Phycol., 42, 1 (2006)
  48. Kyle DJ, Gladue RM, “Eicosapentaenoic Acids and Methods for Their Production,” U. S. Patent No. 5244921(1991)
  49. Zittelli GC, Rodolfi L, Biondi N, Tredici MR, Aquaculture, 261, 932 (2006)
  50. Brown MR, Dunstan GA, Norwood SJ, Miller KA, J. Phycol., 32, 64 (1996)
  51. Dijkstra AJ, Eur. J. Lipid Sci. Tech., 108, 249 (2006)
  52. Jang ES, Jung MY, Min DB, Compr. Rev. Food Sci.Food Saf., 4, 22 (2005)
  53. Ross PE, Am. Sci., 293, 25 (2005)
  54. McInerney MJ, Bryant MP, in D. L. Wise(Ed.), “Fuel Gas Production from Biomass: Review of Methane Fermentation Fundamentals,” CRC Press, Boca Raton, Florida(1983)
  55. Brock TD, Madigan MT, Martinko JM, Parker J, “Biology of Microorganisms,” Prentice Hall, USA(1994)
  56. LEGRAND R, Biomass Bioenerg., 5(3-4), 301 (1993)
  57. Bird KT, in Bird KT, Benson PH(Eds.), Seaweed Cultivation for Renewable Resources: Cost Analyses of Energy from Marine Biomass, Elsevier, Amsterdam, 327-350(1987)
  58. Bird KT, Chynoweth DP, Jerger DE, J.Appl. Phycol., 2, 207 (1990)
  59. CHYNOWETH DP, TURICK CE, OWENS JM, JERGER DE, PECK MW, Biomass Bioenerg., 5(1), 95 (1993)
  60. Kerner KN, Hanssen JF, Pedersen TA, Bioresour. Technol., 37, 17 (1991)
  61. Morand P, Carpentier B, Charlier RH, Maze J, Orlandini M, Plunkett BA, De Waart J, in Guiry MD, Blunden G(Eds), Seaweed Resources in Europe: Bioconversion of Seaweeds, John Wiley & Sons, Chichester, 95-148(1991)
  62. Markov SA, Bazin MJ, Hall DO, Eng. Biotech., 52, 60 (1995)
  63. Marz, Bakterien-Energiekraftwerke der Zukunft., Umwelt Magazin, pp53(1998)
  64. Levin DB, Pitt L, Love M, Int. J. Hydrogen Energy, 29, 173 (2004)
  65. Prince RC, Kheshgi HS, Crit. Rev. Microbiol., 31, 19 (2005)
  66. Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O, Appl. Microbiol. Biotechnol., 72(3), 442 (2006)
  67. Hankammer B, Lehr F, Rupprecht J, Mussgnug JH, Posten C, Kruse O, Photosynthetic Biomass and H2 Production by Green Algae: from Bioengineering to Bioreactor Scale up, Physiologia Plantarum in Press(2007)
  68. Benemann JR, Weare NM, Science, 184, 174 (1974)
  69. Amos WA, “Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae,” NREL/MP-560-35593. National Renewable Energy Laboratory(2004)
  70. http://www.renewableenergyaccess.com.
  71. Canakci M, Sanli H, J. Ind. Microbiol.Biotechnol., 35, 431 (2008)