Polymer(Korea), Vol.33, No.3, 207-212, May, 2009
스티릴피리딘 곁사슬기를 가지는 용해성 폴리이미드의 합성과 광배향
Synthesis and Photoalignment of Soluble Polyimides with Styrylpyridine Side Groups
E-mail:
초록
감광성 폴리이미드의 전구체 폴리이미드는 2, 2, 2-트리플루오르에탄 디안하이드라이드의 유도체와 3,3′-디히드록시-4,4′-디아미노비페닐로부터 제조하였다. 감광성 폴리이미드(PI-SP6와 PI-SP12)는 전구체 폴리이미드와 감광성 2-스티릴피리딘알킬렌(헥실렌과 도데실렌)유도체로부터 제조하였다. 합성한 광반응성 폴리이미드는 여러 가지 유기 용매에 잘 녹았다. 감광성 폴리이미드의 초기 열분해온도는 350 ℃였다. PI-SP6와 PI-SP12의 유리전이온도는 130 ℃와 85 ℃였다. 이는 헥실렌기를 가지는 PI-SP6 보다 도데실렌기를 가지는 PI-SP12가 유연하다는 것을 의미한다. 이들 감광성 고분자의 필름은 250 ℃에서도 90%의 투과율을 유지하였다. 이 결과는 이들 감광성 폴리이미드가 투명성 및 내열성이 우수한 고분자라는 것을 의미한다. PI-SP6와 PI-SP12는 1.5 J/cm2 광량에서 이색비가 각각 0.01과 0.03이었다. 이 결과는 광배향에 유연한 알킬렌 스페이서를 가지는 감광성 폴리이미드가 보다 효과적이라는 것을 뜻한다.
The precursor polyimide of the photoreactive polyimides(PI-SP6 and PI-SP12) was prepared
from a derivative of 2, 2, 2-trifluoroethane dianhydride and 3,3′-dihydroxy-4,4′-diaminobiphenyl.
PI-SP6 and PI-SP12 were then prepared by the polymer reactions of the precursor polyimide with
photoreactive 2-styrylpyridine alkylene (hexylene and dodecylene) derivatives, respectively. The photoreactive polymers were soluble in organic solvents. The polymers showed the initial decomposition temperatures around 350 ℃. The glass transition temperatures of PI-SP6 and PI-SP12 were found to be 130 ℃ and 85 ℃, respectively. This result means that the latter polymer is more flexible than the former polymer. Their transmittance in the film state was 90% at 250 ℃, which indicates that the photosensitive polyimides with thermal stability have high optical transparency even at the high temperature. The respective dichroic ratios of PI-SP6 and PI-SP12 were found to be 0.01 and 0.03 at an exposure energy of 1.5 J/cm2. This result suggests that the latter polymer with larger flexibility compared to the former polymer is more effective for the photoalignment.
- Kimura T, Kim TY, Fukuda T, Matsuda H, Macromol. Chem. Phys., 203, 2344 (2002)
- Chae B, Kim SB, Lee SW, Kim SI, Choi W, Lee B, Ree M, Lee KH, Jung JC, Macromolecules, 35(27), 10119 (2002)
- Lee SW, Chae B, Kim HC, Lee B, Choi W, Kim SB, Chang TH, Ree M, Langmuir, 19(21), 8735 (2003)
- Lee SW, Yoon J, Kim HC, Lee B, Chang TY, Ree M, Macromolecules, 36(26), 9905 (2003)
- Chae B, Lee SW, Lee B, Choi W, Kim SB, Jung YM, Jung JC, Lee KH, Ree M, J. Phys. Chem. B, 107(43), 11911 (2003)
- Kim WS, Ahn DK, Kim MW, Macromol. Chem. Phys., 205, 1932 (2004)
- Kikuchi H, Logan JA, Yoon DY, J. Appl. Phys., 79, 6811 (1996)
- Lee SW, Chang TY, Ree M, Macromol. Rapid Commun., 22(12), 941 (2001)
- Kim SI, Ree M, Shin TJ, Jung JC, J. Polym. Sci. A: Polym. Chem., 37(15), 2909 (1999)
- Schadt M, Schmitt K, Kozinkov V, Chigrinov V, Jpn. J. Appl. Phys., 31, 2115 (1992)
- Ichimura K, Chem. Rev., 100(5), 1847 (2000)
- Ichimura K, Akita Y, Akiyama H, Kudo K, Hayashi Y, Macromolecules, 30(4), 903 (1997)
- Kawatsuki N, Kawakami T, Hayashi M, Takatsuka H, Yamamoto T, Chem. Mater., 12, 1549 (2000)
- Choi J, Lim J, Song K, Polym.(Korea), 30(5), 417 (2006)
- Schadt M, Seiberle H, Schuster A, Nature, 381(6579), 212 (1996)
- Obi M, Morino S, Ichimura K, Macromol. Rapid Commun., 19(12), 643 (1998)
- Yamaki S, Nakagawa M, Ichimura K, Macromol. Chem. Phys., 202, 354 (2001)
- Chen TA, Jen AK, Cai YM, Macromolecules, 29(2), 535 (1996)
- Li XD, Zhong ZX, Jin G, Lee SH, Lee MH, Macromol. Res., 14(3), 257 (2006)
- Kim MW, Hyun SH, Kong JY, Yoon KB, Park LS, Kim WS, J. Ind. Eng. Chem., 12(2), 165 (2006)
- Koo SY, Lee DH, Choi HJ, Choi KY, J. Appl. Polym. Sci., 61(7), 1197 (1996)
- Ichimura K, Oohara N, J. Polym. Sci., Polym. Chem. Ed., 25, 3063 (1987)
- Mitsunobu O, Synthesis, 1 (1981)
- Matsuura T, Hasuda Y, Nishi S, Yamada N, Macromolecules, 24, 5001 (1991)
- Zhang AQ, Li XD, Nah CW, Hwang KJ, Lee MH, J. Polym. Sci. A: Polym. Chem., 41(1), 22 (2003)
- Kim WS, Lee JW, Kwak YW, Lee JK, Park YT, Yoh SD, Polym. J., 33, 643 (2001)
- Kwak G, Kim MW, Park DH, Kong JY, Hyun SH, Kim WS, J. Polym. Sci. Part A: Polym. Chem., 46, 5371 (2008)