화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 241-250, June, 2009
수처리 티탄염 응집 슬러지에서 생산한 산화티탄의 제조와 특성 조사
Preparation and Characterisation of Titanium Dioxide Produced from Ti-salt Flocculated Sludge in Water Treatment
E-mail:
초록
지난 수 년간 본 연구팀은 새로운 티탄염 응집제를 이용하여 폐수를 응집한 후 생산된 슬러지에서 산화티탄을 생산하는 연구를 진행하였다. 티탄염의 응집 효율은 일반적으로 많이 사용되는 철염과 알루미늄염 응집제와 비슷하였으며 슬러지를 소성하여 제조한 산화티탄은 상용 산화티탄보다 더 넓은 표면적과 높은 광촉매 활성을 나타내었다. 산화티탄의 광촉매 활성 향상과 pH를 높이기 위해 응집보조제로서 철, 알루미늄, 칼슘을 사용하여 광촉매 활성이 높은 Fe, Al, Ca 도핑 산화티탄을 제조하였다. 이 기술의 실제 적용 가능성을 확인하기 위하여 염색폐수 파일럿 장치에 적용한 결과, 우수한 유기물 제거 능력과 빠른 응집체 형성이 확인되었다. 염색폐수 슬러지에서 제조한 산화티탄은 높은 유기물 제거 광촉매 활성과 물 광분해에 의해 수소를 생성하였다. 티탄염 응집제와 슬러지에서 제조한 산화티탄의 독성을 D. magna로 조사한 결과, 낮은 독성을 확인할 수 있었다. 이 총설은 미래의 슬러지 재활용 기술로 높은 적용 가능성을 가지는 티탄염으로 제조한 산화티탄의 특성을 체계적으로 정리하였다.
During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of FeCl3 and Al2(SO4)3 salts, commonly used coagulants. Incinerated sludge-TiO2 showed higher surface area and photocatalytic activity than commercially available TiO2. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped TiO2 showed very high photocatalytic activity compared to Fe-doped TiO2. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The TiO2 generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. TiCl4 coagulant and TiO2 produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial TiO2 when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of TiO2 produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field.
  1. Rizzo L, Belgiorno V, Gallo M, Meric S, Desalination, 176(1-3), 177 (2005)
  2. DeWolfe J, Dempsey B, Taylor M, Potter JW, Guidance manual for coagulant changeover, 2, 25, American Water Works Association Press, Denver (2003)
  3. Shon H, Phuntsho S, Okour Y, Cho DL, Kim KS, Li HJ, Na S, Kim JB, Kim JH, J. Korean Ind. Eng. Chem., 19(1), 1 (2008)
  4. Kaneko M, Okura I, Photocatalysis: Science and Technology, Springer, Tokyo (2002)
  5. Shon HK, Vigneswaran S, Kim IS, Cho J, Kim GJ, Kim JB, Kim JH, Environ. Sci. Technol., 41, 1372 (2007)
  6. Upton WV, Buswell AM, Ind. Eng. Chem., 29, 870 (1937)
  7. Lokshin EP, Belikov ML, Russ. J. Appl. Chem., 76, 466 (2003)
  8. Okour Y, Shon HK, Saliby IE, The first Asia-Pacific Young Water Professionals Conference on Water Challenges in Asia-Pacific Region, Gwangju Institute of Science and Technology (GIST), Gwangju City.
  9. Kim JB, Park HJ, Na SH, Shon HK, Kim GJ, Kim JH, International Conference on Nano Science and Nano Technology (GJ-NST), Chonnam National University, Gwangju, Korea, November pp. 6-7 (2008)
  10. Shon HK, Vigneswaran S, Kandasamy J, Kim JB, Park HJ, Cho SW, Kim JH, J. Ind. Eng. Chem., In press. (2009)
  11. Suryanarayana C, Int. Mater. Rev., 40, 41 (1995)
  12. Wang ZM, Yang GX, Biswas P, Bresser W, Boolchand P, Powder Technol., 114(1-3), 197 (2001)
  13. Hung WC, Fu SH, Tseng JJ, Chu H, Ko TH, Chemo., 66, 2142 (2007)
  14. Okour Y, Saliby IE, Shon HK, Vigneswaran S, Kim JH, Cho J, Kim IS, Desal., In press. (2009)
  15. Lee BC, Kim S, Shon HK, Vigneswaran S, Kim SD, Cho J, Kim IS, Choi KH, Kim JB, Park HJ, Kim JH, J. Nanopart. Res., In press. (2009)
  16. Saliby E, Okour YH, Shon HK, Vigneswaran S, Kandasamy J, Kim JH, Journal of AOTs, In press. (2009)
  17. Fujishima A, Honda K, Nature, 238, 37 (1972)
  18. Akikusa J, Khan SUM, International Journal of Hydrogen Energy, 22, 882 (1997)
  19. Mishra PR, Shukla PK, Singh AK, Srivastava ON, International Journal of Hydrogen Energy, 28, 1089 (2003)
  20. Shaba YA, Khan SUM, In. J. Hydrogen Energy, 33, 1118 (2008)
  21. Ji SM, Jun H, Jang JS, Son HC, Borse PH, Lee JS, J. Photochem. Photobiol. A, 189, 141 (2007)
  22. Bard AJ, J. Phys. Chem., 86, 172 (1982)
  23. Nada AA, Barakat MH, Hamed HA, Mohamed NR, Veziroglu TN, In. J. Hydrogen Energy, 30, 687 (2005)
  24. Rayalu SS, Dubey N, Labhsetwar NK, Kagne S, Devotta S, In. J. Hydrogen Energy, 32, 2776 (2007)
  25. Ni M, Leung MKH, Leung DYC, Sumathy K, Renewable Sustainable Energy Rev., 11, 401 (2007)
  26. Yang YZ, Chang CH, Idriss H, Appl. Catal., BI67, 217 (2006)
  27. Park MS, Kang M, Mater. Lett., 62, 183 (2008)
  28. Ikuma Y, Bessho H, In. J. Hydrogen Energy, 32, 2689 (2007)
  29. Alonso F, Riente P, Rodriguez-Reinoso F, Ruiz-Martinez J, Sepulveda-Escribano A, Yus M, J. Catal., 260, 113 (2008)
  30. Sun W, Zhang S, Liu Z, Wang C, Mao Z, Int. J. Hydrogen Energy, 33, 1112 (2008)
  31. Choi HJ, Kang M, Int. J. Hydrogen Energy, 32, 3841 (2007)
  32. Tao C, Guopeng W, Zhaochi F, Gengshen H, Weiguang S, Pinliang Y, Can L, Chin. J. Catal., 29, 105 (2008)
  33. Yi H, Peng T, Ke D, Zan L, Yan C, In. J. Hydrogen Energy, 33, 672 (2008)
  34. Patsoura A, Kondarides DI, Verykios XE, Catal. Today, 124(3-4), 94 (2007)
  35. Shon HK, Vigneswaran S, Okour Y, Kim JB, Kim JH, Kim IS, Cho J, The first Asia-Pacific Young Water Professionals Conference on Water Challenges in Asia-Pacific Region, Gwangju Institute of Science and Technology (GIST), Gwangju City.
  36. Johnson DW, Haley MV, Hart GS, Muse WT, Landis WG, J. Appl. Toxicol., 6, 225 (1986)
  37. Lovern SB, Klaper R, Environ. Toxicol. Chem., 25, 1132 (2006)