화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.3, 317-321, June, 2009
K+-β/β"-Al2O3의 고온 상관계와 소결성 분석
Analysis of the Phase Formation and the Sinterability of K+-β/β"- Al2O3 at High Temperatures (≥1600 ℃)
E-mail:
초록
고체 산화물 전해질로 사용되고 있는 초 이온 전도체인 K+-β/β"-Al2O3의 고온 상관계와 소결성 분석을 위하여 K2OLiO2-Al2O3 삼성분계로부터 고상반응을 통하여 순수한 K+-β/β"-Al2O3 분말을 합성한 후 slip casting방법과 냉간정수압성형에 의하여 tube와 disk형을 각각 제작하였다. Slip casting은 40 wt%의 고체함량을 가지는 슬러리를 사용해 알루미나 몰드에서 이루어졌고 냉간정수압성형은 20 MPa의 압력하에서 수행되었다. 성형체들은 1600 ℃, 1700 ℃, 1750 ℃에서 각각 소결하여 성형방법에 따른 상관계와 소결밀도를 조사하였다. 냉간정수압성형에 의한 시편이 1700 ℃까지 β"-Al2O3의 상분율이 월등히 높은 반면, 소결밀도에 있어서는 slip casting방법의 경우가 다소 높았다. 소결 시 상대밀도는 1750 ℃에서 1 h 경과 후, 두 경우 모두 약 83%를 나타내었다. 90 min 이상 소결하였을 때는 입자의 과대성장과 기공으로 인해 오히려 밀도가 낮아졌다.
In order to analyze the high temperature phase formation and the sinterability of super ionic conductor K+-β/β"-Al2O3 which is commonly used as a solid oxide electrolyte, the pure K+-β/β"-Al2O3 powder in the ternary system K2O-LiO2-Al2O3 was synthesized by solid state reaction and formed to tube and disk using slip casting method and cold isostatic pressing (CIP), respectively. The slip casting was conducted in an alumina mold with the slurry containing 40 wt% of solid contents and the CIP was carried out under 20 MPa. The samples were sintered at 1600 ℃, 1700 ℃ and 1750 ℃, respectively, and their phase formation and the sintering density were investigated according to the forming method. The samples produced by CIP showed far higher β"-Al2O3 fraction as compared with those by slip casting. On the other hand, the samples by slip casting showed slightly higher sintering density. The relative density reached to about 83% at 1750 ℃ and for 1 h, independent of the forming method. In the case of 90 min socking time, the density was decreased owing to the exaggerated grain growth and the pores by K2O evaporation.
  1. Farrington GC, Briant JL, Proceeding of the International Conference on Fast Ion Transport in Solid Electrodes and Electrolystes, 395, Lake Geneva, Wisconsin (1979)
  2. Schafer GW, Kim HJ, Aldinger F, Solid State Ion., 77, 234 (1995)
  3. Li JG, Sun X, Acta Mater., 48, 3103 (2000)
  4. Li J, Ye Y, Shen L, Chen J, Zhou H, Materials Science and Engineering, 390, 265 (2005)
  5. Shin JH, Kim WS, Lim SK, J. Korean Ind. Eng. Chem., 16(5), 648 (2005)
  6. Kordesch K, Simader G, Fuel Cells and Their Applications, 141, VCH (1996)
  7. Paik UG, Slip casting, Ceramics (Korea), 8, 218 (1993)
  8. Fisher ML, Lange FF, J. Am. Ceram. Soc., 83(8), 1861 (2000)
  9. Chung WY, Kim WS, Lim SK, J. Korean Ind. Eng. Chem., 14(4), 397 (2003)
  10. Kim WS, Lim SK, J. Korean Ind. Eng. Chem., 12(3), 312 (2001)
  11. de Kroon AP, Schaefer GW, Aldinger F, Chem. Mater., 7, 878 (1995)
  12. Song HI, Kim ES, Physica B, 150, 148 (1985)
  13. Kim WS, Ham CH, Lim SK, J. Korean Ind. Eng. Chem., 12(1), 16 (2001)
  14. Schaefer GW, Aldinger F, cfi/Ber. DFG., 73, 109 (1996)