화학공학소재연구정보센터
Thin Solid Films, Vol.516, No.5, 533-536, 2008
Deposition of device quality silicon nitride with ultra high deposition rate (> 7 nm/s) using hot-wire CVD
The application of hot-wire (HW) CVD deposited silicon nitride (SiNx) as passivating anti-reflection coating on multicrystalline silicon (mc-Si) solar cells is investigated. The highest efficiency reached is 15.7% for SiNx layers with an N/Si ratio of 1.20 and a high mass density of 2.9 g/cm(3). These cell efficiencies are comparable to the reference cells with optimized plasma enhanced (PE) CVD SiNx even though a very high deposition rate of 3 nm/s is used. Layer characterization showed that the N/Si ratio in the layers determines the structure of the deposited films. And since the volume concentration of Si-atoms in the deposited films is found to be independent of the N/Si ratio the structure of the films is determined by the quantity of incorporated nitrogen. It is found that the process pressure greatly enhances the efficiency of the ammonia decomposition, presumably caused by the higher partial pressure of atomic hydrogen. With this knowledge we increased the deposition rate to a very high 7 nm/s for device quality SiNx films, much faster than commercial deposition techniques offer [S. von Aichberger, Photon Int. 3 (2004) 40]. (C) 2007 Elsevier B.V. All rights reserved.