화학공학소재연구정보센터
Energy & Fuels, Vol.22, No.3, 2043-2052, 2008
Solar-driven coal gasification in a thermally irradiated packed-bed reactor
Coal gasification for high-quality synthesis gas production is considered using concentrated solar energy as the source of high-temperature process heat. The solar reactor consists of two cavities separated by a radiant emitter plate, with the upper one serving as the solar absorber and the lower one containing the reacting packed bed that shrinks as the reaction progresses. A 5 kW prototype reactor with an 8 cm depth, 14.3 cm diameter cylindrical bed was fabricated and tested in a high-flux solar furnace, subjected to solar flux concentrations up to 2600 suns and packed-bed temperatures up to 1440 K. The reactor is modeled by formulating the 1D unsteady energy conservation equation that couples conductive-radiative heat transfer with the reaction kinetics and solving it by the finite volume technique for a transient shrinking domain. The overall reaction rate was determined experimentally by thermogravimetry, while the effective thermal conductivity was determined experimentally in a radial heat flow oven. Model validation was accomplished in terms of bed temperatures, gasified mass, and bed shrink rates measured in solar experiments conducted with beech charcoal. Heat transfer through the bed proved to be the rate-controlling mechanism, indicating an ablation regime.