화학공학소재연구정보센터
Energy & Fuels, Vol.22, No.3, 2053-2060, 2008
Thermocatalytic conversion of landfill gas and biogas to alternative transportation fuels
Landfill gas (LFG) and biogas are important renewable resources for production of alternative transportation fuels. The resources of LFG and biogas are vast and widely available but remain mostly unused. In this paper, the authors assess the technical feasibility of direct catalytic reforming (i.e., without preliminary methane recovery from these gases) of LFG and biogas to synthesis gas that could further be processed to synthetic liquid hydrocarbon fuels via Fischer-Tropsch (FT) synthesis. The catalytic activity and selectivity of a number of noble metal (Ru, Ir, Pt, Rh, Pd) and Ni-based catalysts for reforming of a model CH4-CO2 mixture mimicking a typical LFG into a synthesis gas were evaluated. The issues related to the catalysts stability and process sustainability under the conditions that are favorable for carbon deposition were explored. The experimental data are in a good agreement with AspenPlus simulation results. It was shown that the syngas produced by Ni-catalyzed steam-assisted reforming of a model LFG is suitable for production of liquid hydrocarbons via FT synthesis.