화학공학소재연구정보센터
Journal of Membrane Science, Vol.322, No.1, 105-112, 2008
Barrier properties of polymer/alumina nanocomposite membranes fabricated by atomic layer deposition
Novel polymer/ceramic nanocomposite membranes were fabricated, characterized and tested for their barrier performance. Atomic layer deposition (ALD) was used to deposit alumina films on primary, micron-sized (16 and 60 mu m) high-density polyethylene (HDPE) particles at a rate of similar to 0.5 nm/cycle at 77 degrees C. Well-dispersed polymer/ceramic nanocomposites were obtained by extruding alumina coated HDPE particles. The dispersion of alumina flakes can be controlled by varying the number of ALD coating cycles and substrate polymer particle size. The diffusion coefficient of fabricated nanocomposite membranes can be reduced to half with the inclusion of 7.29 vol.% alumina flakes. However, a corresponding increase in permeability was also observed due to the voids formed at or near the interface of the polymer and alumina flakes during the extrusion process, as evidenced by electron microscopy. The low surface wettability of the alumina outerlayers was believed to be one of the main reasons of void formation. Particle surface wettability was improved using 3-aminopropyltriethoxysilane (APS) to coat the particle ALD surface modified polymer particles prior to extrusion. The diffusion coefficient and permeability of the membrane using surfactant-modified particles decreased by 20%, relative to the non-modified case. (c) 2008 Elsevier B.V. All rights reserved.