Journal of Membrane Science, Vol.322, No.1, 113-121, 2008
Pervaporation performance of crosslinked polydimethylsiloxane membranes for deep desulfurization of FCC gasoline - I. Effect of different sulfur species
Crosslinked PDMS/PEI composite membranes were prepared, in which asymmetric PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat-plate composite membrane. The different function composition of the PDMS/PEI composite membranes were characterized by reflection FTIR. The surface and section of PDMS/PEI composite membranes were investigated by scanning electron microscope (SEM). The infinite dilute activity and diffusion coefficients of thiophene, 2-methyl thiophene, 2,5-dimethyl thiophene, n-butyl mercaptan, n-butyl sulfide in crosslinked PDMS were measured in the temperature range of 80-100 degrees C by inverse gas chromatography. The solubility parameters of thiophene, 2-methyl thiophene, 2,5-dimethyl thiophene, n-butyl mercaptan, n-butyl sulfide were calculated by the group contribution method and the selectivity of PDMS composite membrane for different organic sulfur compounds was investigated. The composite membranes prepared in this work were employed in pervaporation separation of n-heptane and different sulfur forms mixtures. The theoretical results showed good agreement with the experimental results, and the order of partial permeate flux and selectivity for different organic sulfur compounds was: thiophene > 2-methylthiophene > 2,5-dimethylthiophene > n-butyl mercaptan > n-butyl sulfide, which should be significant for practical application. Crown Copyright (c) 2008 Published by Elsevier B.V. All rights reserved.