화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.1, 122-129, January, 2010
Dynamic simulation of fluids in vessels via entropy maximization
E-mail:
This paper proposes a new method to simulate the dynamic behavior of fluids in vessels of known and fixed volume, under the assumption of instantaneous phase equilibrium. The mathematical formulation of the problem leads to a system of differential-algebraic equations, in which the mass and energy balances are ordinary differential equations (ODE) and the phase equilibrium conditions give the algebraic equations. The structure of the problem is such that, at each time step, the internal energy, volume, and number of moles of each component inside the vessel are known. The equilibrium state of the fluid under these specifications maximizes the entropy. An entropy maximization method recently proposed for this problem in the literature was coupled with an ODE solver. The procedure can track the appearance and disappearance of phases in the vessel, adding or removing them as necessary. The examples show applications of the procedure to problems with one, two, or three phases, in different types of dynamic problems. Numerical convergence was easily achieved in all cases, showing the robustness of the proposed procedure.
  1. Gopal V, Biegler LT, Comput. Chem. Eng., 21(7), 675 (1997)
  2. Muller D, Marquardt W, Comput. Chem. Eng., 21(S), 817 (1997)
  3. Thery R, Llovell F, Meyer X, Gerbaud V, Joulia X, Comput. Chem. Eng., 28(12), 2469 (2004)
  4. Chen CC, Mathias PM, AIChE J., 48(2), 194 (2002)
  5. de Hemptinne JC, Behar E, Oil Gas Sci. Technol.-Revue de l’IFP, 61, 303 (2006)
  6. de Hemptinne JC, Mougin P, Barreau A, Ruffine L, Tamouza S, Inchekel R, Oil Gas Sci. Technol.-Revue de l’IFP, 61, 363 (2006)
  7. Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH, Ind. Eng. Chem. Res., 45(14), 4855 (2006)
  8. Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH, Ind. Eng. Chem. Res., 45(14), 4869 (2006)
  9. Myers JA, Sandler SI, Wood RH, Ind. Eng. Chem. Res., 41(13), 3282 (2002)
  10. Callen HB, Thermodynamics and an Introduction to Thermostatistics, 2nd ed., Wiley, New York (1985)
  11. Saha S, Carroll JJ, Fluid Phase Equilib., 138(1-2), 23 (1997)
  12. Goncalves FM, Castier M, Araujo OQF, Braz. J. Chem. Eng., 24, 277 (2007)
  13. Michelsen ML, Fluid Phase Equilib., 160, 617 (1999)
  14. Lima EPA, Castier M, Biscaia Jr. EC, Oil Gas Sci. Technol.-Revue de l’IFP, 63, 677 (2008)
  15. Lioen WM, de Swart JJB, van der Veen WA, Pside Users Guide, Modelling, Analysis and Simulation ISSN 1386-3703, 34, 1 (1998)
  16. Castier M, Fluid Phase Equilib., 276(1), 7 (2009)
  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes in FORTRAN, 2nd ed., Cambridge University Press, Cambridge (1992)
  18. Esposito RO, Castier M, Tavares FW, Chem. Eng. Sci., 55(17), 3495 (2000)
  19. Michelsen ML, Fluid Phase Equilib., 9, 1 (1982)
  20. Michelsen ML, Fluid Phase Equilib., 9, 21 (1982)
  21. Murray W, Numerical Methods for Unconstrained Optimization, Academic Press, London and New York (1972)
  22. Peng D, Robinson D, Ind. Eng. Chem. Fundam., 15, 59 (1976)
  23. Castier M, Comput. Chem. Eng., 23(9), 1229 (1999)
  24. Hua JZ, Brennecke JF, Stadtherr MA, Comput. Chem. Eng., 20(S), 395 (1996)
  25. Bruggemann S, Oldenburg J, Zhang P, Marquardt W, Ind. Eng. Chem. Res., 43(14), 3672 (2004)
  26. Radulescu G, Gangadwala J, Paraschiv N, Kienle A, Sundmacher K, Comput. Chem. Eng., 33(3), 590 (2009)
  27. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1987)
  28. Carroll JJ, Mather AE, Fluid Phase Equilib., 105(2), 221 (1995)