화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.2, 162-169, February, 2010
PA6/MWNT Nanocomposites Fabricated Using Electrospun Nanofibers Containing MWNT
E-mail:
The electrospinning process with an applied electric field is used to extrude submicron fibers from polymeric solutions and has been recognized as a viable method for dispersing and aligning nanoparticles into a nanofibrous polymer matrix. In this study, electrospun nanofibers containing multi-walled carbon nanotubes (MWNTs) were used as a preform to fabricate MWNT reinforced polymer nanocomposites. The electrospun nanofibers were prepared by electrospinning a solution of polyamide 6 (PA6) and multiwalled carbon nanotubes (MWNTs). Raman spectroscopy, TGA, DSC, XRD, and TEM showed that the MWNTs were well dispersed and aligned in the electrospun nanofibers. The electrospun nanofibers in mat form were then consolidated into a solid composite by a thermal pressing. The initial modulus and tensile strength of the nanocomposites were improved by the reinforcement of the MWNTs. However, their breaking strain was lowered. This shortcoming was overcome by introducing a functional group onto the MWNTs through a surface treatment. Overall, the current method (modification of MWNTs, electrospinning, and thermal fabrication) can improve the tensile properties, including initial modulus, tensile strength and breaking strain, of PA6/MWNTs nanocomposites.
  1. Iijima S, Nature, 354, 56 (1991)
  2. Nalwa HS, Ed., Handbook of nanostructured material and nanotechnology, Academic Press, San Diego, 2000.
  3. Xie XL, Mai YW, Zhou XP, Mater. Sci. Eng. R-Rep., 49, 89 (2005)
  4. Qian D, Dickey EC, Andrews R, Rantell T, Appl. Phys. Lett., 76, 2868 (2000)
  5. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH, Polymer, 40, 5967 (199)
  6. Gong X, Liu J, Baskaran S, Voise RD, Young JS, Chem. Mater., 12, 1049 (2000)
  7. Tang BZ, Xu HY, Macromolecules, 32(8), 2569 (1999)
  8. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K, Nature, 367(6463), 519 (1994)
  9. HIURA H, EBBESEN TW, TANIGAKI K, Adv. Mater., 7(3), 275 (1995)
  10. Feng W, Bai XD, Lian YQ, Liang J, Wang XG, Yoshino K, Carbon, 41, 1551 (2003)
  11. Jin ZX, Pramoda KP, Goh SH, Xu GQ, Mater. Res. Bull., 37(2), 271 (2002)
  12. Fan JH, Wan MX, Zhu DB, Chang BH, Pan ZW, Xe SS, J. Appl. Polym. Sci., 74(11), 2605 (1999)
  13. Lin Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP, Macromolecules, 36(19), 7199 (2003)
  14. Riggs JE, Guo ZX, Carroll DL, Sun YP, J. Am. Chem. Soc., 122(24), 5879 (2000)
  15. Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M, Adv. Mater., 14(19), 1380 (2002)
  16. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P, Science, 290, 1331 (2000)
  17. Kannan P, Eichhorn SJ, Young RJ, Nanotechnology, 18, 235707 (2007)
  18. Jeong JS, Jeon SY, Lee TY, Park JH, Shin JH, Alegaonkar PS, Berdinsky AS, Yoo JB, Diam. Relat. Mat., 15, 1839 (2006)
  19. Meng H, Sui GX, Fang PF, Yang R, Polymer, 49(2), 610 (2008)
  20. Chen GX, Kim HS, Park BH, Yoon JS, Polymer, 47(13), 4760 (2006)
  21. Kim BS, Bae SH, Park YH, Kim JH, Macromol. Res., 15(4), 357 (2007)
  22. Park I, Park M, Kim J, Lee H, Lee MS, Macromol. Res., 15(6), 498 (2007)
  23. Burghard M, Surf. Sci. Rep., 58, 1 (2005)
  24. Fornes TD, Paul DR, Polymer, 44(14), 3945 (2003)
  25. Stephens JS, Chase DB, Rabolt JF, Macromolecules, 37(3), 877 (2004)
  26. Zhao CG, Hu GJ, Justice R, Schaefer DW, Zhang SM, Yang MS, Han CC, Polymer, 46(14), 5125 (2005)
  27. Penel-Pierron L, Seguela R, Lefebvre JM, Miri V, Depecker C, Jutigny M, Pabiot J, J. Polym. Sci. B: Polym. Phys., 39(11), 1224 (2001)