Applied Chemistry for Engineering, Vol.21, No.3, 272-277, June, 2010
Spirulina Platensis NIES 39를 이용한 Polyethylene Bag 반응기에서의 이산화탄소 고정화
Carbon Dioxide Fixation using Spirulina Platensis NIES 39 in Polyethylene Bag
E-mail:,
초록
현재의 값비싼 광생물반응기를 대체하기 위하여 비닐백을 소재로 한 보급형 광생물반응기를 개발하고자 본 연구를 실시하였다. 앞선 연구에서 Spirulina platensis NIES 39의 최적배양조건을 확립하였으며, 이를 토대로 하여 이산화탄소 고정화 연구를 실시하였다. 이산화탄소 농도 및 유속에 따른 성장은 10% CO2, 0.1 vvm의 조건에서 가장 높은 2.677g/L의 건조균체량을 나타냈으며, 이산화탄소 고정화량(F(C02))은 4.056 g·CO2/L, 이산화탄소 고정화속도(R(CO2))는 0.312g CO2/L/day로 나타났다. 반면, 이산화탄소 고정화 효율(FE(CO2))의 경우 5% CO2, 0.1 vvm의 조건에서 나타난 데이터에 비해서 그 절반 수준인 52.372%를 나타내었다. 그리고 빛의 유무에 따른 이산화탄소 주입효과를 알아본 결과, 빛이 있는 조건에서 약 3 h 주기로 10 min간 주입하는 조건이 가장 우수한 성장 및 이산화탄소 고정화를 한 것으로 나타났으며, 빛이 없을 때는 이산화탄소 주입이 무의미하다는 결론을 얻을 수 있었다.
To replace current expensive photobioreactor, this study was conducted to develop low-cost photobioreactor made of polyethylene bag. In previous study, optimal culture conditions of Spirulina platensis NIES 39 have been established, and based on these, the study of biological carbon dioxide fixation has been conducted. The maximum growth was the biomass 2.677g/L at conditions of 10% CO2, 0.1 vvm. It was shown that F(C02) was 4.056 g CO2/L and was 0.312 g CO2/L/day. But, compared with the data at conditions of 5% CO2, 0.1 vvm, FE(CO2) was shown 52.372% which is half of it. Regarding the effect of CO2 following illumination, the growth revealed that the input conditions, for 10 min per 3 h, were excellent in the light. CO2 in absent light. CO2 concentration and flow rate were 5% CO2, 0.1 vvm, respectively. Finally, the addition of CO2 was ineffective in the absence of light.
- Schmeider SH, Science, 243, 771 (1989)
- Binaghi L, Borghi AD, Lodi A, Converti A, Borghi MD, Proc. Biochem., 38, 1241 (2003)
- Park HK, Park HJ, Kang BS, DCER Techinfo part I, 3, 100 (2004)
- Lee IH, Kim SY, Park JY, J. Korean Ind. Eng. Chem., 18(3), 239 (2007)
- Hwang YD, Shin HY, Kwak H, Bae SY, Korean Chem. Eng. Res., 44(6), 588 (2006)
- Karube T, Takeuchi T, Barnes DJ, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992)
- Hall DO, House JI, Energy Convers. Manag., 34, 889 (1993)
- Jorge AVC, Giani AL, Daniel IPA, Guilherme MM, Roselini TK, World J. Microbial. Biotechnol., 16, 15 (2000)
- Tredici M, Zitelli GC, Biagiolini S, Materassi R, Bull. Inst. Oceanogr., 12, 89 (1993)
- Oh HM, Kim JS, Lee SJ, Kor. J. of Environ. Biol., 16, 291 (1998)
- Kim TH, Sung KD, Lee JS, Lee JY, Oh SY, Lee HY, Kor. J. Appl. Microbiol. Biotechnol., 25, 235 (1997)
- Jeon SM, Kim IH, Ha JM, Lee JH, J. Korean Ind. Eng. Chem., 19(2), 145 (2008)
- Joo DS, Jung CK, Lee CH, Cho SY, J. Korean Fish. Soc., 33, 475 (2000)
- Martinez-Jeronimo F, Espinosa-Chavez F, J. Appl. Phycol., 6, 423 (1994)
- Rangel-Yagui CD, Danesi EDG, de Carvalho JCM, Sato S, Bioresour. Technol., 92(2), 133 (2004)
- Rippka R, Deruelles J, Waterbury JB, Herdman M, Roughan PG, J. Sci. Food Agric., 47, 295 (1989)
- Babu SC, Rajasekaran B, Food Policy, 9, 405 (1991)
- Becker EW, Vanattaraman LV, Biomass, 4, 105 (1984)
- Ciferri O, Microbiol. Rev., 47, 551 (1983)
- Mosulishvili LM, Kirkesali EI, Belokobylsky AI, Khizanishvili AI, Frontasyeva MV, Pavlov SS, Gundorina SF, J. Pharm. Biomed. Anal., 30, 87 (2002)
- Lu J, Yoshizaki G, Sakai K, Takeuchi T, Fish. Sci., 68, 51 (2002)
- Vonshak A, Biotechnol. Adv., 8, 709 (1990)
- Ogawa T, Terui G, J. Ferment. Technol., 48, 361 (1970)
- Morais MG, Costa JAV, J. Biotechnol., 129, 439 (2007)
- Reichert CC, Reinehr CO, Costa JAV, Braz. J. Chem. Eng., 23, 23 (2006)
- Vonshak A, Abeliovich A, Boussiba S, Arad S,Richmond A, Biomass, 2, 175 (1982)
- Pelizer LH, Danesi EDG, Rangel CO, Sassano CEN, Carvalho JCM, Sato S, Moraes IO, J. Food Eng., 56, 371 (2003)
- Soletto D, Binaghi L, Ferrari L, Lodi A, Carvalho JCM, Zilli M, Converti A, Biochem. Eng. J., 39, 369 (2008)
- Yun YS, Park JM, Volesky B, HWAHAK KONGHAK, 37(5), 800 (1999)