Applied Chemistry for Engineering, Vol.21, No.3, 265-271, June, 2010
축전식 이온제거에 대한 TiO2/Activated Carbon 화합물의 전기흡착 거동
Electrosorption Behavior of TiO2/Activated Carbon Composite for Capacitive Deionization
E-mail:
초록
활성탄에 TiO2를 졸-겔 방법으로 코팅하여 탄소복합전극을 제조하였고 축전식 이온제거(Capacitive deionization : CDI) 과정에서 나타난 제염효과에 대하여 고찰하였다. 본 연구에서 TiO2는 전극의 젖음성을 향상시켜 전극과 전해질의 접촉 저항을 감소시키고, 전기이중층 흡착량을 증가시킬 수 있으므로 CDI전극재로 활성탄에 코팅하였다. TEM, XRD, XPS로 활성탄에 TiO2가 코팅되었는지 확인하였다. 순환전류전압법과 impedance측정 결과 탄소복합전극이 탄소전극보다 전기이중층 용량이 증가하였으며, 전극의 확산저항이 줄어든 것을 확인하였다. 또한 이온제거율을 확인하기 위한 충전-방전 및 이온전도도 평가 결과 전해질 NaCl 1000 μS/cm에서 탄소복합전극이 탄소전극보다 39% 더 많은 이온을 제거하는 것을 확인하였다. 본 연구 결과 CDI용 전극재료 TiO2가 코팅된 탄소복합전극이 탄소전극보다 효과적인 제염효과를 보임을 확인하였다.
Desalination effects of capacitive deionization (CDI) process was studied using TiO2/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, TiO2 was coated on activated carbon. By means of TiO2 coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on TiO2 composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that TiO2/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity
profiles showed that the ion removal ratios of TiO2/activated carbon electrode in NaCl electrolyte of 1000 μS/cm more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated TiO2 as electrode material was more effective than raw carbon electrode.
- Trainham JA, Newman J, J. Electrochem. Soc., 124, 1528 (1977)
- Blaedel WJ, Wang JC, Anal. Chem., 51, 799 (1979)
- Matlosz M, Newman J, J. Electrochem. Soc., 133, 1850 (1986)
- Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
- Porteous A, Desalination Technology, Applied Science Publishers, London (1983)
- Spiegler KS, El-Sayed YM, Desalination, 134(1-3), 109 (2001)
- Valerdi-Perez R, Lopez-Rodriguez M, Ibanez-Mengual JA, Desalination, 137(1-3), 199 (2001)
- Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Appl. Electrochem., 26(10), 1007 (1996)
- Hori T, Hashino M, Omori A, Matsuda T, Takasa K, Watanabe K, J. Membr. Sci., 132(2), 203 (1997)
- Yang CM, Choi WH, Cho BW, Cho WI, Yun KS, Han HS, J. Korean Ind. Eng. Chem., 15(3), 294 (2004)
- Wang J, Angnes L, Tobias H, Roesner RA, Hong KC, Glass RS, Kong FM, Pekala RW, Anal. Chem., 65, 2300 (1993)
- Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B, J. Non-Cryst. Solids, 225, 74 (1998)
- Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, Carroll KL, Energy Fuels, 11(2), 337 (1997)
- Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
- Park KK, Lee JB, Park PY, Yoon SW, Moon JS, Eum HM, Lee CW, Desalination, 206(1-3), 86 (2007)
- Wang XZ, Li MG, Chen YW, Cheng RM, Huang SM, Pan LK, Sun Z, Appl. Phys. Lett., 89, 1 (2006)
- Afkhami A, Conway BE, J. Colloid Interface Sci., 251(2), 248 (2002)
- Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
- Weinberger BR, Garber RB, Appli. Phys. Lett., 66, 2409 (1995)
- Augustynski, J. Electrochem. Acta, 38, 43 (1993)
- Ryoo MW, Seo G, Water Res., 37, 1527 (2003)
- Wang H, Wu Y, Xu BQ, Appl. Catal. B: Environ., 59(3-4), 139 (2005)
- Hwang YJ, Jeong SK, Shin JS, Nahm KS, Stephan AM, Journal of Alloys and Compounds, 448, 141 (2008)
- Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL, Carbon, 45, 717 (2007)
- Takahagi T, Ishitani A, Carbon, 22, 43 (1984)
- Paiva MC, Bernardo CA, Nardin M, Carbon, 38, 1323 (2000)
- Wagner C, Muilenbergy G (Eds.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota (1979)
- Liu FM, Wang TM, Appl. Surf. Sci., 195(1-4), 284 (2002)
- Biniak S, Szymanski G, Siedlewski J, Swiatkowski A, Carbon, 35, 1799 (1997)
- Yu JG, Zhao XJ, Zhao QN, Thin Solid Films, 379(1-2), 7 (2000)
-
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Kim YM, J. of the Korean Society of Analyrical Sciences (1992)
- Mullier M, Kastening B, J. Electroanal. Chem., 374, 19 (1994)
- Ue M, Electrochim. Acta, 39(13), 2083 (1994)
- Tanahashi I, Yoshida A, Nishino A, J. Electrochem. Soc., 137, 3052 (1990)
- Bard AJ, Faulkner LR, Electrochemical Methods, John Wiley & Sons Inc., 522, New York (1980)
- Hou CH, Liang CD, Yiacoumi S, Dai S, Tsouris C, J. Colloid Interface Sci., 302(1), 54 (2006)
- Shen Q, You SK, Park SG, Jiang H, Guo D, Chen B, Wang X, Electroanalysis, 20, 2526 (2008)
- Xie J, Zhao XB, Cao GS, Zhao MJ, Electrochem. Acta, 50, 2725 (2004)
- Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)