화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.21, No.3, 323-327, June, 2010
La 이온이 도핑된 Ti-SBA-15의 합성 및 메틸렌블루의 광촉매 분해 반응
Synthesis of Ti-SBA-15 Doped with Lanthanide Ion and Photocatalytic Decomposition of Methylene Blue
E-mail:
초록
La 이온이 도핑된 Ti-SBA-15 촉매를 수열합성법으로 제조하였고, 이들의 특성을 XRD, FT-IR, DRS, NH3-TPD 및 PL 등을 이용하여 조사하였다. 또한, 이 촉매를 사용하여 메틸렌블루에 대한 광분해 반응성을 조사하였다. La 이온이 도핑되더라도 Ti-SBA-15 촉매는 메조동공체 구조를 유지하고 있으며, 500 ℃에서 6 h 동안 소성 한 것이 가장 결정성이 좋았다. La 이온의 치환량이 증가함에 따라 기공의 크기와 기공의 부피가 줄어들었으며 표면적은 오히려 증가하였다. 메틸렌블루의 광분해 반응에서 1%의 La 이온을 첨가 시킨 것이 가장 높은 광촉매 활성을 보여주었으며, 도핑량이 5% 이상이 되면 순수한 Ti-SBA-15 촉매보다 오히려 활성이 떨어진 것을 볼 수 있다.
Ti-SBA-15 catalysts doped with lanthanide ion were synthesized using conventional hydrothermal method and they were characterized by XRD, FT-IR, DRS, NH3-TPD and PL. We also examined the activity of these materials on the photocatalytic decomposition of methylene blue. La/Ti-SBA-15 samples with varying lanthanide ions doping maintained the mesoporous structure and the catalysts calcined at 500 ℃ for 6 h showed the highest crystallinity. With increasing the doping amount of lanthanide ion, the pore size and pore volume of La/Ti-SBA-15 materials decreased but the surface area increased. 1% La/Ti-SBA-15 catalysts showed the highest photocatalytic activity on the decomposition of methylene blue but the catalysts doped with more than 5% lanthanide ions showed lower activity compared to pure Ti-SBA-15 catalyst.
  1. Matsuda S, Kato A, Appl. Catal., 8, 149 (1983)
  2. Larson SA, Falconer JL, Appl. Catal. B: Environ., 4(4), 325 (1994)
  3. Kamat PV, Dimitrijevic NM, Solar Energy, 44, 83 (1990)
  4. Notari B, Adv. Catal., 41, 253 (1996)
  5. Do YJ, Kim JH, Park JH, Park SS, Hong SS, Suh CS, Lee GD, Catal. Today, 101(3-4), 299 (2005)
  6. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD, J. Am. Chem. Soc., 120(24), 6024 (1998)
  7. Newalkar BL, Olanrewaju J, Komarneni S, Chem. Mater., 13, 552 (2001)
  8. Jung WY, Baek SH, Yang JS, Lim KT, Lee MS, Lee GD, Park SS, Hong SS, Catal. Today, 131(1-4), 437 (2008)
  9. Anderson C, Bard AJ, J. Phys. Chem., 101, 2611 (1997)
  10. Ogawa S, Hu K, Band AJ, J. Phys. Chem., 101, 5707 (1997)
  11. Kim D, Woo SI, Solid State Commun., 136, 554 (2005)
  12. Iliev V, Tomova D, Bilyarska L, Eliyas A, Petrov L, Appl. Catal. B: Environ., 63(3-4), 266 (2006)
  13. Yan XL, He J, Evans DG, Duan X, Zhu YX, Appl. Catal. B: Environ., 55(4), 243 (2005)
  14. Li G, Zhao XS, Ind. Eng. Chem. Res., 45(10), 3569 (2006)
  15. Alba MD, Luan ZH, Klinowski J, J. Phys. Chem., 100(6), 2178 (1996)
  16. Larbot A, Alary JA, Fabre JP, Guizard C, Cot L, Better Ceramics Through ChemistryⅡ, 659 (1986)
  17. Saif M, Abdel-Mottaleb MSA, Inorg. Chim. Acta, 360, 2863 (2007)
  18. Lopez T, Rojas F, Alexander-Katz R, Galindo F, Balankin A, Buljan A, J. Solid State Chem., 177, 1873 (2004)
  19. Tuel A, Zeolite, 15, 228 (1995)
  20. Boccuti M, Rao KM, Zecchina A, Leofanti G, Petrini G, in: Morterra C, Zecchina A, Costa G (Eds.), Structure and Reactivity of Surfaces, Elsevier, Amsterdam (1989)
  21. Uno M, Kosuga A, Okui M, Horisaka K, Yamanaka S, J. Alloy Compd, 400, 270 (2005)
  22. Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)
  23. Lee MS, Lee GD, Ju CS, Lim KT, Hong SS, J. Korean Ind. Eng. Chem., 13(3), 216 (2002)