Macromolecular Research, Vol.18, No.5, 442-448, May, 2010
Effect of RGDS and KRSR Peptides Immobilized on Silk Fibroin Nanofibrous Mats for Cell Adhesion and Proliferation
E-mail:
In this study, RGDS and KRSR peptides were immobilized onto electrospun silk fibroin (SF) nanofibrous mats by imide bond formation, and the cell affinities were evaluated as an immobilized SF scaffold. The MTT assay showed that cell adhesion and spreading of normal human dermal fibroblast (NHDF) occurs on SF nanofibrous mat with immobilized RGDS peptide in the early culture time (within 2-4 h after seeding). On the other hand, the KRSR peptide was more effective on normal human osteoblasts (NHOst). Therefore, the cell adhesion peptides RGDS and
KRSR are effective in improving cell adhesion, spreading and proliferation of specific cell types. Moreover, these effects depend on the peptide density. The performance of the SF nanofibrous mats with immobilized peptides may be enhanced as a scaffold for specific uses.
- Langer R, Vacanti JP, Science, 260, 920 (1993)
- Webb K, Hlady V, Tresco PA, J. Biomed. Mater. Res., 41, 422 (1998)
- Yang J, Bei J, Wang S, Biomaterials, 23, 2607 (2002)
- Safinia L, Wilson K, Mantalaris A, Bismarck A, Marcromol. Biosci., 7, 315 (2001)
- Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY, J. Biomed. Mater. Res., 78, 283 (2006)
- Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT, Biomaterials, 26, 3197 (2005)
- Groll J, Fiedler J, Engelhard E, Ameringer T, Tugulu S, Klok HA, Brenner RE, Moeller M, J. Biomed. Mater. Res., 74, 607 (2005)
- Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A, Ohsuga N, Ohta T, Nishimura SI, Biomaterials, 26, 5339 (2005)
- Jin HJ, Chen JS, Karageorgiou V, Altman GH, Kaplan DL, Biomaterials, 25, 1039 (2004)
- Zhong SP, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL, Biomacromolecules, 6(6), 2998 (2005)
- Boland ED, Pawlowski KJ, Barnes CP, Simpson DG, Wnek GE, Bowlin GL, ACS Sym. Ser., 918, 188 (2006)
- Shin H, Jo S, Mikos AG, Biomaterials, 24, 4353 (2003)
- Pierschbacher MD, Ruoslahti E, Nature, 309, 30 (1984)
- Hautanen A, Gailit J, Mann DM, Ruoslahti E, J. Biol. Chem., 264, 1437 (1989)
- Pierschbacher MD, Ruoslahti E, J. Biol. Chem., 262, 17294 (1987)
- Ruoslahti E, Annu. Rev. Cell. Dev. Bi., 12, 697 (1996)
- Benoit DSW, Anseth KS, Biomaterials, 26, 5209 (2005)
- Neff JA, Tresco PA, Caldwell KD, Biomaterials, 20, 2377 (1999)
- Ehteshami G, Brune DC, Lopez JC, Massia SP, Acta Biomater., 1, 85 (2005)
- Bagno A, Piovan A, Dettin M, Chiarion A, Brun P, Gambaretto R, Fontana G, Di Bello C, Palu G, Castagliuolo I, Bone, 40, 693 (2007)
- Cardin AD, Weintraub HJR, Arterioscl. Throm. Vas., 9, 21 (1989)
- Chen JS, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL, J. Biomed. Mater. Res., 67, 559 (2003)
- Lv QA, Feng QL, Hu K, Cui FZ, Polymer, 46(26), 12662 (2005)
- Gobin AS, Butler CE, Mathur AB, Tissue Eng., 12, 3383 (2006)
- Gobin AS, Froude VE, Mathur AB, J. Biomed. Mater. Res., 74, 465 (2005)
- Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH, Biotechnol. Lett., 30(3), 405 (2008)
- Ki CS, Kim JW, Hyun JH, Lee KH, Hattori M, Rah DK, Park YH, J. Appl. Polym. Sci., 106(6), 3922 (2007)
- Ki CS, Gang EH, Um NC, Park YH, J. Membr. Sci., 302(1-2), 20 (2007)
- Um IC, Kweon HY, Lee KG, Park YH, Int. J. Biol. Macromol., 33, 203 (2003)
- Mann BK, West JL, J. Biomed. Mater. Res., 60, 86 (2002)
- Burgess BT, Myles JL, Dickinson RB, Ann. Biomed. Eng., 28, 110 (2000)