화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.4, 326-332, July, 2010
PAA/PHA/Organoclay 나노복합재료의 제조 및 특성
Preparation and Properties of PAA/PHA/Organoclay Nanocomposite
E-mail:
초록
Poly(amic acid)(PAA), poly(o-hydroxyamide)(PHA) 및 층상형인 유기화 점토를 블렌딩하여 나노복합재료 필름을 제조하였다. PAA/PHA 나노복합재료들의 모폴로지를 연구하기 위해 XRD, SEM 그리고 TEM을 사용하였으며 DMA, TGA, UTM, LOI 및 PCFC를 이용하여 나노복합재료들의 기계적, 열적 성질 및 난연성을 조사하였다. 유기화 점토는 PAA/PHA 매트릭스에 잘 분산되어 박리 및 삽입형 모폴로지를 보였다. PAA/PHA 블렌드에 3 wt% 유기화 점토를 첨가함으로써 PAA/PHA 블렌드의 초기 모듈러스가 약 48% 향상된 3.68 GPa까지 증가하였다. 유기화 점토 함량이 4 wt% 이상에서는 초기 모듈러스와 인장강도가 모두 감소하였는데 이는 PAA/PHA 매트릭스에 대한 유기화 점토의 뭉침 현상 때문인 것으로 유추된다. 유기화 점토의 함량이 3 wt% 이하일 때 PAA/PHA 나노복합재료들의 열안정성 및 난연 특성들은 유기화 점토의 함량이 증가함에 따라 증가하였다.
Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.
  1. LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11 (1999)
  2. Alexander M, Dubois P, Mater. Sci. Eng. Res., 28, 1 (2000)
  3. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  4. Krishnamoorti R, Vaia RA, Giannelis EP, Chem. Mater., 8, 1728 (1996)
  5. Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer, 43(22), 5915 (2002)
  6. Imai Y, Itoya K, Kakimoto MA, Macromol. Chem. Phys., 201, 2251 (2000)
  7. Ogata N, Makromol. Chem. Macromol. Symp., 53, 191 (1992)
  8. Yoon DS, Choi JK, Jo BW, Polym.(Korea), 30(6), 478 (2006)
  9. Yoon DS, Choi JK, Jo BW, Polym.(Korea), 32(1), 77 (2008)
  10. Hsiao SH, He MH, J. Polym. Sci. A: Polym. Chem., 39(22), 4014 (2001)
  11. Hsu SLC, Chen WC, Polymer, 43(25), 6743 (2002)
  12. Jang BN, Choi J, Polym. Sci. Technol., 20(1), 8 (2009)
  13. Tyan HL, Liu YC, Wei KH, Polymer, 40(17), 4877 (1999)
  14. Yoon DS, Choi JK, Jo BW, Polym.(Korea), 29(5), 493 (2005)
  15. An YU, Chang JH, Park YH, Park JM, Polym.(Korea), 26(3), 381 (2002)
  16. Walters RN, Lyon RE, J. Appl. Polym. Sci., 87(3), 548 (2003)
  17. Walters RN, Lyon RE, J. Anal. Appl. Pyrolysis., 71, 27 (2004)
  18. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993)
  19. Zhu ZK, Yang Y, Yin J, Wang XY, Ke YC, Qi ZN, J. Appl. Polym. Sci., 73(11), 2063 (1999)
  20. Jung MH, Chang JH, Polym.(Korea), 31(6), 518 (2007)
  21. Chang JH, Park KM, Eur. Polym. J., 36, 2185 (2000)
  22. Yang KS, Edie DD, Lim DY, Kim YM, Choi YO, Carbon, 41, 2039 (2003)
  23. Chow WS, Ishak ZAM, Karger-Kocsis J, Apostolov AA, Ishiaku US, Polymer, 44(24), 7427 (2003)
  24. Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
  25. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Chem. Mater., 8, 2628 (1996)
  26. Li XC, Kang TY, Cho WJ, Lee JK, Ha CS, Macromol. Rapid Commun., 22(16), 1306 (2001)
  27. Kim S, Yoon DS, Choi JK, Jo BW, Elastomer, 42, 177 (2007)
  28. Tsay SY, Chen BK, Chen CP, J. Appl. Polym. Sci., 99(6), 2966 (2006)
  29. Wang S, Hu Y, Li Z, Wang Z, Zhuang Y, Chen Z, Fan W, Colloid Polym. Sci., 281, 951 (2003)
  30. Wang S, Hu Y, Li Z, Wang Z, Zhuang Y, Chen Z, Fan W, Colloid Polym. Sci., 281, 951 (2003)
  31. Stevens MP, mer Chemistry an Introduction, Oxford University Press, New York Oxford (1999)
  32. Chang JH, Farris RJ, Polym. Eng. Sci., 40(2), 320 (2000)