화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.5, 1404-1411, September, 2010
Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM-5 catalyst
E-mail:
The reaction was carried out in fixed bed reactor. The effect of process variables on the activity of oxalic acid treated 0.5 wt% ZnO/7 wt% CuO/HZSM5 catalyst for the conversion of methanol to gasoline range hydrocarbons was studied. The catalyst was prepared by incipient wetness impregnation method. After impregnation the catalyst was treated with oxalic acid. The validity of kinetic model proposed for the methanol to gasoline range hydrocarbon process at zero time on stream was studied, from the experimental results obtained in a wide range of operating conditions. The kinetic parameters for various models were calculated by solving the equation of mass conservation in the reactor for the lumps of the kinetic models. The kinetic model fitted well for simulating the operation in the fixed bed reactor in the range of 635 to 673 K,with regression coefficient (R2) higher than 0.96.
  1. Alyea EC, Bhat RN, Zeolites., 15, 318 (1995)
  2. Choudhary VR, Kinage AK, Zeolites., 15, 732 (1995)
  3. Calleja G, de. Lucas A, Van. Grieken R, Fuel., 74, 4451 (1995)
  4. Chang CD, J. Catal., 86, 289 (1984)
  5. Aljarallah AM, Elnafaty UA, Abdillahi MM, Appl. Catal. A: Gen., 154(1-2), 117 (1997)
  6. Song WG, Marcus DM, Fu H, Ehresmann JO, Haw JF, J. Am. Chem. Soc., 124(15), 3844 (2002)
  7. Patcas FC, J. Catal., 231(1), 194 (2005)
  8. Ramos FS, de Farias AMD, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG, Catal. Today, 101(1), 39 (2005)
  9. Chang CD, Chem. Eng. Sci., 35, 619 (1980)
  10. Haw JF, Song W, Marcus DM, Nicholas JB, Acc. Chem., 36, 317 (2003)
  11. Hutchings GJ, Watson GW, Willock DJ, Micro. Meso. Mater., 29, 67 (1999)
  12. Kaeding W, Butter SA, J. Catal., 61, 155 (1980)
  13. Abdillahi MM, El-Nafaty UA, Al-Jarallah AM, Appl. Catal.A: Gen., 91, 1 (1992)
  14. Dewaele O, Geers VL, Froment GF, Marin GB, Chem. Eng. Sci., 54(20), 4385 (1999)
  15. Marchi AJ, Froment GF, Appl. Catal. A: Gen., 94, 91 (1993)
  16. Nishi K, Shimizu T, Yoshida H, Satsuma A, Hattori T, Appl. Catal. A: Gen., 166(2), 335 (1998)
  17. Keil FJ, Micro. Meso. Mater., 29, 49 (1999)
  18. Freeman D, Wells RPK, Hutchings GJ, J. Catal., 205(2), 358 (2002)
  19. Inoue Y, Nakashiro K, Ono Y, Micro. Meso. Mater., 4, 379 (1995)
  20. Mikkelsen O, Kolboe S, Micro. Meso. Mater., 29, 173 (2002)
  21. Schoenfleder H, Hinder J, J. Werther J, Keil FJ, Chem. Eng.Sci., 49, 5377 (1994)
  22. Stocker M, Micro. Meso. Mater., 38, 279 (2000)
  23. Sedran U, Mahay A, Lasa HID, Chem. Eng. Sci., 45, 1161 (1990)
  24. Chen M, Reagan WJ, J. Catal., 59, 123 (1979)
  25. Gayubo G, Benito PL, Aguayo AT, Aguirre I, Bilbao J, Chem. Eng. J., 63, 45 (1996)
  26. Schipper PH, Kramback FJ, Chem. Eng. Sci., 41, 1013 (1986)
  27. Gayubo AG, Aguayo AT, del Campo AES, Tarrio AM, Bilbao J, Ind. Eng. Chem. Res., 39(2), 292 (2000)
  28. Mihail RS, Satraja G, Maria, Musca G, Pop G, Chem. Eng.Sci., 38, 1581 (1983)
  29. Zaidi HA, Pant KK, Catal. Today, 96(3), 155 (2004)
  30. Zaidi HA, Pant KK, Korean J. Chem. Eng., 22(3), 353 (2005)
  31. Zaidi HA, Pant KK, Ind. Eng. Chem. Res., 47(9), 2970 (2008)
  32. Aguayo AT, Gayubo AG, Castilla M, Arandes JM, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 40(26), 6087 (2001)