Applied Chemistry for Engineering, Vol.21, No.4, 445-451, August, 2010
전이금속을 담지한 Ti-SCM 제조 및 특성연구
Preparation and Characterization of the Photocatalysts Transition Metal-Doped Ti-SCM
E-mail:
초록
광범위하게 사용되는 TiO2는 자외선 영역 하에서는 상당히 효율적인 광반응 활성을 보이나 가시광 영역에서는 활성이 없는 단점을 가지고 있다는 것은 잘 알려져 있는 사실이다. 본 연구에서는 이러한 광촉매가 가지는 문제점을 보완하고자 하였다. 즉, TiO2와 함께 가시광선 영역에서 전자전이를 보일 수 있는 전이금속 등을 활용하여 광반응을 저해하는 전자와 정공과의 재결합을 방지하고, 자외선 영역뿐만 아니라 가시광선 영역까지 넓은 파장 범위에서 광촉매 활성을 가질 수 있는 광촉매를 제조하였다. 이를 위하여 이온교환방법을 이용하여 H형 강산성 이온교환수지에 TiO2 전구체를 담지 시킨 다음, 전이금속 전구체 등을 담지 시키고 탄화/활성화 과정을 거쳐 전이금속과 이산화티탄이 동시에 존재하는 2종광촉매 (Ti-M-SCM)를 제조하였다. 또한 제조된 Ti-M-SCM의 광분해 효율을 평가하기 위하여 유동식 반응기에서 휴믹산을 대상으로 하여 파장 254 nm와 365 nm 하에서의 광분해 반응을 실시하였다.
TiO2 shows considerably efficient photoreaction activity under the ultraviolet range but it has disadvantage that there is no activity in the visible light range. In this study, it was tried to find a solution for the problem of this kind of photocatalyst by utilizing transition metal, which can show electronic transition with TiO2 in the visible light area. Photocatalyst was prepared, which can have photocatalytic activity in the wide wavelength range, not only ultraviolet region but also visible light area and prevent the combination of electron and hole hindering the photoreaction. For this purpose, by using the ion exchange method, TiO2 precursor and transition metal precursor were dipped into H typed strong acid ion-exchange resin. And two kind photocatalysts (Ti-M-SCM) in which transition metal and titanium dioxide coexist through the carbonization/
activation process was prepared. Moreover, photolytic reaction under the wavelength 254 nm and 365 nm was performed for humic acid (HA) in the continuous reactor in order to estimate the efficiency of produced Ti-M-SCM.
- Park HS, Kim DH, Kim SJ, Lee KS, Journal of the Korean Institute of Metals and Materials, 42, 11 (2004)
- Kim SJ, Park SD, Journal of the Korean Institute of Metals and Materials, 39, 214 (2001)
- Singer PC, Water Science and Technology, 40, 25 (1999)
- Bennett LE, Drikas M, Water Research, 27, 1209 (1993)
- Herrmann JM, Catal. Today, 24(1-2), 157 (1995)
- Matos J, Laine J, Herrmann JM, J. Catal., 200(1), 10 (2001)
- Matos J, Laine J, Herrmann JM, Appl. Catal. B: Environ., 18(3-4), 281 (1998)
- Herrmann JM, Matos J, Disdier J, Guillard C, Laine J, Malato S, Blanco J, Catal. Today, 54(2-3), 255 (1999)
- Liu SX, Chen XY, Chen X, J. Hazard. Mater., 143(1-2), 257 (2007)
- Yoneyama H, Torimoto T, Catal. Today, 58(2-3), 133 (2000)
- Lee JJ, Suh JK, Hong JS, Park JW, Lee JM, Korean Chem. Eng. Res., 44(4), 375 (2006)
- Choi JY, Master’s Thesis, Kumoh National Institute of Technology, Gumi, Gyeongbuk, Korea (2007)
- Vijayan P, Mahendiran C, Suresh C, Shanthi K, Catalyst Today, 141, 220 (2009)
- Yun CY, Han MS, Lee JJ, Kang MS, Lee JW, Lee JH, Korean Society of Environmental Engineers, 665 (2004)
- Kim JS, Ha HJ, Lee SK, Lee JK, Kim IK, Korea Society on Water Quality, 705 (2004)
- Fu X, Clark LA, Yang Q, Anderson MA, Environmetal Science and Technology, 30, 647 (1996)
- Serpone N, Lawless D, Disdier J, Herrmann JM, Langmuir, 10(3), 643 (1994)
- Octave Levenspiel, Chemical Reaction Engineering, 3rd ed., 45, John Wiley & Sons, Inc., New York (1999)