화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.1, 120-124, January, 2011
Synthesis of anionic multichain type surfactant and its effect on methane gas hydrate formation
E-mail:,
This paper reports an experimental study on the effects of novel anionic multichain disulfonate surfactant on the formation of methane gas hydrate. A series of surfactants with sodium sulfonic acid groups and different hydrophobic carbon chain lengths (C8, C10, and C12) were synthesized, and the effects of carbon chain length and concentration on methane hydrate formation kinetics were systematically investigated. Methane hydrate formation was conducted in a magnetic stirred vessel at the constant temperature of 274.15 K and in a pressure range of 3.5.4.0 MPa. All surfactants showed kinetic promoting behavior for methane gas hydrate formation, and the surfactant with the shortest chain length showed the highest acceleration effect. In addition, this multichain disulfonate surfactant exhibited higher methane storage capacity than SDS (sodium dodecyl sulfate) even at lower surfactant concentration, due to its lower critical micelle concentration (CMC) and the surface tension itself of the Gemini-type multichain surfactant.
  1. Sloan ED, Clathrate Hydrates of Natural Gases, Marcel Dekker, New York (1998)
  2. Narita H, Uchida T, 2nd International Conference on Natural Gas Hydrates, Toulouse (1996)
  3. Gudmundsson JS, Khokhar AA, Parlaktuna M, in: Proceedings of 67th Annual Technical Conference and Exhibition of SPE (1990)
  4. Okutani K, Kuwabara Y, Mori YH, Chem. Eng. Sci., 63(1), 183 (2008)
  5. Karaaslan U, Uluneye E, Parlaktuna M, Journal of Petroleum Science and Engineering., 35, 49 (2002)
  6. Daimaru T, Yamasaki A, Yanagisawa Y, Journal of Petroleum Science and Engineering., 56, 89 (2007)
  7. Kalogerakis N, Jamaluddin A, Dholabhai PD, Bishnoi PR, SPE International Symposium on Oilfield Chemistry, New Orleans (1993)
  8. Ganji H, Manteghian M, Sadaghiani Zadeh K, Omidkhah MR, Rahimi Mofrad H, Fuel., 86, 434 (2007)
  9. Zhang CS, Fan SS, Liang DQ, Guo KH, Fuel., 83, 2115 (2004)
  10. Karaaslan U, Parlaktuna M, Energy Fuels, 14(5), 1103 (2000)
  11. Zhong Y, Rogers RE, Chem. Eng. Sci., 55(19), 4175 (2000)
  12. Sun ZG, Wang RZ, Ma RS, Guo KH, Fan SS, Int. J. Energy Res., 27(8), 747 (2003)
  13. Sun ZG, Wang RZ, Ma RS, Guo KH, Fan SS, Energy Conv. Manag., 44(17), 2733 (2003)
  14. Link DD, Ladner EP, Elsen HA, Taylor CE, Fluid Phase Equilib., 211(1), 1 (2003)
  15. Gnanendran N, Amin R, Journal of Petroleum Science and Engineering., 40, 37 (2003)
  16. Rogers R, Zhang G, Dearman J, Woods C, Journal of Petroleum Science and Engineering., 56, 82 (2007)
  17. Okutani K, Kuwabara Y, Mori YH, Chem. Eng. Sci., 62(14), 3858 (2007)
  18. Lee S, Zhang J, Mehta R, Woo TK, Lee JW, The Journal of Physical Chemistry., C111, 4734 (2007)
  19. Seo JG, Youn MH, Chung JS, Song IK, Journal of Industrial and Engineering Chemistry., 16, 765 (2010)
  20. Di Profio P, Arca S, Germani R, Savelli G, Chem. Eng. Sci., 60(15), 4141 (2005)
  21. Menger FM, Keiper JS, Angewandte Chemie International Edition., 39, 1906 (2000)
  22. Devinsky F, Lacko I, Imam T, Journal of Colloid and Interface Science., 143, 336 (1991)
  23. Hait SK, Moulik SP, Current Science., 1001 (2002)
  24. Xi Yuan H, Rosen MJ, Journal of Colloid and Interface Science., 124, 652 (1988)
  25. Lee BM, Kang HC, Park JM, Yoon JH, US 6,392,064 B2 (2002)
  26. Lee BM, Kang HC, Park JM, KR 0578716 B1 (2006)