화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.5, 1214-1220, May, 2011
Solar photocatalytic detoxification of cyanide by different forms of TiO2
E-mail:
The photocatalytic efficiencies of TiO2 nanocrystals of different modifications (anatase, rutile, P25 Degussa, Hombikat), to oxidize cyanide ion and subsequently the cyanate also, under natural sunlight at 950±25W m.2 in alkaline solution have been compared. The oxides have been characterized by powder XRD, UV-visible diffuse reflectance and impedance spectroscopies. Under identical solar irradiance, the reaction follows Langmuir-Hinshelwood kinetics on cyanide, and depends on the apparent area of the catalyst bed and dissolved oxygen. However, the adsorption of cyanide on TiO2 in dark is too small to be measured analytically. The photocatalytic activity of TiO2 is not solely governed by the band gap or charge-transfer resistance or capacitance or phase composition but is in accordance with the specific surface area or the average crystallite size; rutile is an exception.
  1. Marugan J, van Grieken R, Cassano AE, Alfano OM, Catal. Today., 144, 87 (2009)
  2. Marugan J, van Grieken R, Cassano AE, Alfano OM, Appl. Catal. B: Environ., 85(1-2), 48 (2008)
  3. Karunakaran C, in Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, Kaneco S Ed., Research Signpost, Trivandrum (2006)
  4. Bozzi A, Guasaquillo I, Kiwi J, Appl. Catal. B: Environ., 51(3), 203 (2004)
  5. Chiang K, Amal R, Tran T, J. Mol. Catal. A-Chem., 193(1-2), 285 (2003)
  6. Hernandez-Alsonso MD, Coronado JM, Maira AJ, Soria J, Loddo V, Augugliaro V, Appl. Catal. B: Environ., 39(3), 257 (2002)
  7. Augugliaro V, Loddo V, Marci G, Palmisano L, Lopezmunoz MJ, J. Catal., 166(2), 272 (1997)
  8. Thiruvenkatachari R, Vigneswaran S, Moon IS, Korean J. Chem. Eng., 25, 65 (2008)
  9. Thompson TL, Yates JT, Chem. Rev., 106(10), 4428 (2006)
  10. Osgood R, Chem. Rev., 106(10), 4379 (2006)
  11. Zhao J, Li B, Onda K, Feng M, Petek H, Chem. Rev., 106(10), 4402 (2006)
  12. Peller J, Wiest O, Kamat PV, J. Phys. Chem. A, 108(50), 10925 (2004)
  13. Shiraishi Y, Saito N, Hirai T, J. Am. Chem. Soc., 127(37), 12820 (2005)
  14. Du YK, Rabani J, J. Phys. Chem. B, 107(43), 11970 (2003)
  15. Sun LZ, Bolton JR, J. Phys. Chem., 100(10), 4127 (1996)
  16. Chiang K, Amal R, Tran T, Adv. Environ. Res., 6, 471 (2002)
  17. Kim HI, Lu L, Kim JH, Lee CH, Hyeon T, Choi W, Lee HI, Bull. Korean Chem. Soc., 22, 1371 (2001)
  18. Ryu J, Choi W, Environ. Sci. Technol., 42, 294 (2008)
  19. Karunakaran P, Anilkumar P, Manikandan G, Gomathisankar P, Sol. Energy Mater. Sol. Cells., 94, 900 (2010)
  20. Nagaraja P, Hemanthakumar MS, Yathirajan HS, Prakash JS, Anal. Sci., 18, 1027 (2002)
  21. Kuhn HJ, Braslavsky SE, Schmidt R, Pure Appl. Chem., 76, 2105 (2004)
  22. Jung S, Kim JH, Korean J. Chem. Eng., 27(2), 645 (2010)
  23. Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed., Wiley (2000)
  24. Karunakaran C, Senthilvelan S, Karuthapandian S, J. Photochem. Photobiol. A., 172, 207 (2005)
  25. Hirano K, Nitta H, Sawada K, Ultrason. Sonochem., 12, 271 (2005)
  26. Reddy EP, Davydov L, Smirniotis P, Appl. Catal. B: Environ., 42(1), 1 (2003)
  27. Christensen PA, Egerton TA, Kosa SAM, Tinlin JR, Scott K, J. Appl. Electrochem., 35(7), 683 (2005)
  28. McMurray TA, Byrne JA, Dunlop PSM, McAdams ET, J. Appl. Electrochem., 35(7), 723 (2005)
  29. Karunakaran C, Anilkumar P, Cent. Eur. J. Chem., 7, 519 (2009)
  30. Xin B, Ren Z, Hu H, Zhang X, Dong C, Shi K, Jing L, Fu H, Appl. Surf. Sci., 252 (2005)
  31. Yun HJ, Lee H, Kim ND, Yi J, Electrochem. Commun., 11, 363 (2009)
  32. Sclafani A, Herrmann JM, J. Phys. Chem., 100(32), 13655 (1996)
  33. Ding Z, Lu GQ, Greenfield PF, J. Phys. Chem. B, 104(19), 4815 (2000)
  34. Yan MC, Chen F, Zhang JL, Anpo M, J. Phys. Chem. B, 109(18), 8673 (2005)
  35. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC, J. Phys. Chem. B, 107(19), 4545 (2003)