Journal of Process Control, Vol.20, No.10, 1220-1234, 2010
The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning
A simple method has been developed for PID controller tuning of an unidentified process using closed-loop experiments. The proposed method requires one closed-loop step setpoint response experiment using a proportional only controller, and it mainly uses information about the first peak (overshoot) which is very easy to identify. The setpoint experiment is similar to the classical Ziegler-Nichols (1942) experiment, but the controller gain is typically about one half, so the system is not at the stability limit with sustained oscillations. Based on simulations for a range of first-order with delay processes, simple correlations have been derived to give PI controller settings similar to those of the SIMC tuning rules (Skogestad (2003) [6]). The recommended controller gain change is a function of the height of the first peak (overshoot), whereas the controller integral time is mainly a function of the time to reach the peak. The method includes a detuning factor that allows the user to adjust the final closed-loop response time and robustness. The proposed tuning method, originally derived for first-order with delay processes, has been tested on a wide range of other processes typical for process control applications and the results are comparable with the SIMC tunings using the open-loop model. (C) 2010 Elsevier Ltd. All rights reserved.
Keywords:PID control;Tuning;On-line;Closed-loop;First-order with delay process;IMC tuning;Ziegler-Nichols