화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.3, 479-483, May, 2011
Oxidative CO2 reforming of CH4 over Ni/α-Al2O3 catalyst
E-mail:
Oxidative carbon dioxide reforming of methane to synthesis gas over alumina-supported Ni catalysts was investigated at atmospheric pressure. The reforming reactions were carried out using a CO2 to CH4 feed ratio of one and reaction temperatures in the range 600-800℃ . The activity and stability of the catalyst, carbon deposition, and synthesis gas (H2/CO) ratio were determined. Catalyst deactivation was primarily due to coke formation. energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and thermo-gravimetric/differential analyzer (TG/DTA) techniques were used to confirm carbon deposition. It was observed that increasing the oxygen feed concentration and/or reaction temperatures, enhanced methane conversion and reduced coke formation. When 20% O2 feed was used at 800 ℃, catalyst stability test revealed a 99.7% CH4 conversion, 1.0% CH4 conversion drop and 1% carbon formation.
  1. Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S, Int. J. Hydrogen Energy., 33, 991 (2008)
  2. He S, Wu H, Yu W, Mo L, Lou H, Zheng X, Int. J. Hydrogen Energy., 34, 839 (2009)
  3. Pholjaroen B, Laosiripojana N, Praserthdam P, Assabumrungrat S, J. Ind. Eng. Chem., 15(4), 488 (2009)
  4. Yoon YI, Baek IH, Park SD, J. Ind. Eng. Chem., 13(5), 842 (2007)
  5. Assabumrungrat S, Sonthisanga P, Kiatkittipong W, Laosiripojana N, Arpornwichanop A, Soottitantawat A, Wiyaratn W, Praserthdam P, J. Ind. Eng. Chem., 16(5), 785 (2010)
  6. Cho W, Kim YC, Kim SS, J. Ind. Eng. Chem., 16(1), 20 (2010)
  7. Tsyganok AI, Inaba M, Tsunoda T, Suzuki K, Takehira K, Hayakawa T, Appl. Catal. A: Gen., 275(1-2), 149 (2004)
  8. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
  9. Al-Fatish ASA, Ibrahim AA, Fakeeha AH, Soliman MA, Siddiqui MRH, Abasaeed AE, Appl. Catal. A: Gen., 364(1-2), 150 (2009)
  10. Liu SL, Xiong GX, Dong H, Yang WS, Appl. Catal. A: Gen., 202(1), 141 (2000)
  11. O'Connor AM, Ross JRH, Catal. Today, 46(2-3), 203 (1998)
  12. Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT, Catal. Today., 13, 417 (1992)
  13. Choudhary VR, Rajput AM, Prabhakar B, Catal. Lett., 32(3-4), 391 (1995)
  14. Inui T, Saigo K, Fujii Y, Fujioka K, Catal. Today, 26(3-4), 295 (1995)
  15. Gao J, Hou ZY, Guo JZ, Zhu YH, Zheng XM, Catal. Today, 131(1-4), 278 (2008)
  16. Foo SY, Cheng CK, Nguyen TH, Adesina AA, Ind. Eng. Chem. Res., 49(21), 10450 (2010)
  17. Souza MMVM, Schmal M, Appl. Catal. A: Gen., 255(1), 83 (2003)
  18. Qiangshan J, Hui L, Jinhua F, Zhaoyin H, Xiaoming Z, Int. J. Hydrogen Energy., 29, 1245 (2004)
  19. Wang SB, Lu GQ, Ind. Eng. Chem. Res., 38(7), 2615 (1999)
  20. Ashcroft AT, Cheetham AK, Ford JS, Green MLH, Grey CP, Murrel AJ, Vernon PDF, Nature., 344, 319 (1990)
  21. Vermeiren WJM, Blomma E, Jacobs PA, Catal. Today., 13, 427 (1992)
  22. Ruckenstein E, Hu YH, Ind. Eng. Chem. Res., 37(5), 1744 (1998)