화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.7, 645-653, July, 2011
Structure and Properties of Polyimide (BTDA-TDI/MDI co-polyimide) Fibers Obtained by Wet-Spinning
E-mail:
BTDA-TDI/MDI (P84, synthesized by the condensation of 2,4-diisocyanato-1-methylbenzene and 1,1'-methylenebis(4-isocyanatobenzene) with 5,5'-carbonylbis(l,3-isobenzofurandione)) co-polyimide fibers were prepared by wet-spinning. The basic spinning conditions were found from the studies of dope viscosity, ternary phase diagrams, coagulation value, and precipitation value. The effect of the coagulation bath composition on the morphology of as-spun fibers was investigated and a theoretical approach was used to understand the coagulation phenomena. Scanning electron microscopy (SEM) showed that the cross-sectional shape of the fiber deviated more from an ellipse shape with the increasement of N-methyl-2-pyrrdidinone (NMP) content. The surface and cross section morphology of the as-spun fibers was also analyzed by the rate of diffusion and phase separation. The as-spun fibers were treated in heating tubes without drawing at different temperatures. The gravimetric analysis spectra showed that the BTDA-TDI/MDI co-polyimide fibers, which had been heat treated at 350 and 400℃ , possessed better thermal properties than the as-spun fibers, a large weight loss was observed only above 550 ℃. Heat treatment of the fibers resulted in relatively high tensile strength and modulus. The fibers spun in Bath C (70/30, NMP/water, wt/wt) and Bath D (80/20, NMP/water, wt/wt) showed better thermal properties and higher tensile strength.
  1. Yang HH, in Aromatic High-Strength Fibers, Wiley, New York, 1989, p 673.
  2. Weinrotter K, Seidl S, in Handbook of Fiber Science and Technology, Marcel Dekker, New York, 1993, p 179.
  3. Park SK, Farris RJ, Polymer, 42(26), 10087 (2001)
  4. Neuber C, Schmidt HW, Giesa R, Macromol. Mater. Eng., 291, 1315 (2006)
  5. Zhang QH, Dai M, Ding MX, Chen DJ, Gao LX, Eur. Polym. J., 40, 2487 (2004)
  6. Edwards WM, U.S. Patent 3,179,614 (1965).
  7. Irwin RS, U.S. Patent 3,415,782 (1968).
  8. Koton MM, U.K. Patent 1,183,306A (1970).
  9. Koton MM, U.K. Patent 2,025,311A (1980).
  10. Prokopchuk NR, Baklagina YG, Korzhavin LN, Sidorovich AV, Koton MM, Vysokomol. Soedin., A19, 1126 (1977)
  11. Prokopchuk NR, Korzhavin LN, Sidorovich AV, Milevskaya IS, Baklagina YG, Koton MM, Dokl. Akad. Nauk SSSR, 236, 127 (1977)
  12. Sukhanova TE, Baklagina YG, Kudryavtsev VV, Maricheva TA, Lednicky F, Polymer, 40(23), 6265 (1999)
  13. Kaneda T, Katsur T, Nakagawa K, Makino H, Horio M, J. Appl. Polym. Sci., 32, 3133 (1986)
  14. Hara S, Yamada T, Yoshida T, U.S. Patent 3,829,399 (1974).
  15. Minami M,Taniguchi M, U.S. Patent 3,860,559 (1975).
  16. Nagaoka K, U.S. Patent 4,448,957 (1984).
  17. Eashoo M, Wu Z, Zhang A, Shen D, Tse C, Harris FW, Macromol. Chem. Phys., 195, 2207 (1994)
  18. Weinrotter K, Jeszenszky T, Schmidt H, Baumann S, Kalleitner J, U.S. Patent 4,801,502 (1989).
  19. Lenzing AG, High Perform. Text, 7, 13 (1990)
  20. Farrissey WJ, Onder BK, U.S. Patent 3,985,934 (1976).
  21. Ren JZ, Li ZS, Wong FS, J. Membr. Sci., 241(2), 305 (2004)
  22. Eashoo M, Buckley LJ, Stclair AK, J. Polym. Sci. B: Polym. Phys., 35(1), 173 (1997)
  23. Masson JC, in Acrylic Fiber Technology and Applications, Marcel Dekker, New York, 1995, p 65.
  24. Knudsen JP, Tex. Res. J., 33, 13 (1963)
  25. Albrecht W, Weigel T, Schossig-Tiedemann M, Kneifel K, Peinemann KN, Paul D, J. Membr. Sci., 192(1-2), 217 (2001)
  26. Dong RJ, Zhao JX, Zhang YW, Pan D, J. Polym. Sci. B: Polym. Phys., 47(3), 261 (2009)
  27. Peng N, Chung TS, Wang KY, J. Membr. Sci., 318(1-2), 363 (2008)
  28. Qiao XY, Chung TS, Pramoda KP, J. Membr. Sci., 264(1-2), 176 (2005)
  29. Kim JY, Lee HK, Baik KJ, Kim SC, J. Appl. Polym. Sci., 65(13), 2643 (1997)
  30. Kim JH, Min BR, Won J, Park HC, Kang YS, J. Membr. Sci., 187(1-2), 47 (2001)
  31. Boom RM, Van den Boomgaard T, Van den Berg JWA, Smolders CA, Polymer, 34, 2348 (1993)
  32. Tompa H, in Polymer Solutions, Butterworths, London, 1956, p 183.
  33. Ziabicki A, in Fundamentals of Fibre Formation, Shanghai Science and Technology Press, Shanghai, 1983, p 315.
  34. Wang DL, Li K, Sourirajan S, Teo WK, J. Appl. Polym. Sci., 50, 1693 (1993)
  35. Wang DL, Li K, Teo WK, J. Membr. Sci., 98(3), 233 (1995)
  36. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ, Macromolecules, 37(26), 9899 (2004)
  37. Barsema JN, Kapantaidakis GC, van der Vegt NFA, Koops GH, Wessling M, J. Membr. Sci., 216(1-2), 195 (2003)
  38. Chung TS, Teoh SK, Hu XD, J. Membr. Sci., 133(2), 161 (1997)
  39. Ren JZ, Li ZS, Wang R, J. Membr. Sci., 309(1-2), 196 (2008)
  40. Barzin J, Sadatnia B, Polymer, 48(6), 1620 (2007)
  41. Ray RJ, Krantz WB, Sani RL, J. Membr. Sci., 23, 155 (1985)