Polymer(Korea), Vol.35, No.5, 419-423, September, 2011
저분자량 수용성 키토산의 항균 활성에 관한 연구
Antibacterial Activity of Low Molecular Weight Water-Soluble Chitosan
E-mail:,
초록
항균제 대체제로 응용하기 위하여 다양한 저분자량 수용성 키토산(LMWSC; MW1, MW3, MW5, MW10)을 제조하였으며, 이들의 항균제 대체제 사용 가능여부와 그 작용 기작에 대하여 연구하였다. 먼저, 다양한 분자량 형태의 LMWSC를 이용하여 사람에게 유해한 각종 박테리아를 이용하여 항균효과를 확인하였고, 그 중 MW10의 항균효과가 가장 우수한 것으로 확인되었다. 그 반면 사람의 적혈구를 이용한 용혈활성 실험에서 독성을 나타내지 않았다. MW10의 항균 효과가 세균의 어느 부분에서 일어나는지 확인하기 위해 박테리아의 세포막 조건(PE/PG=7/3, w/w)으로 인공 리포좀을 만들었고, 여기에 MW10을 처리한 결과 세균 막에서 항균효과를 나타냄을 추론할 수 있었다.
Chitosan is a natural polymer derived from chitin that has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. In addition, water-soluble chitosan has been used to enhance the stability of chitosan in water and reduce cytotoxic activity induced by acetic acid. In this study, the antibiotic activity and mechanism of low molecular weight water-soluble chitosan (LMWSC; MW1, MW3, MW5, and MW10) were examined in pathogenic bacteria cells and vesicles containing bacterial membrane lipids. MW10 displayed potent antibacterial activity against pathogenic bacteria strains and no cytotoxicity against mammalian cells. In addition, the degree of calcein leakage was examined as a function of lipid composition (PE/PG=7/3 w/w). The results of these experiments demonstrated that MW10
promoted leakage in negatively-charged membranes. Furthermore, confocal microscopy revealed that MW10 was located in the plasma membrane.
Keywords:chitosan;antibacterial activity;pathogenic bacteria;lipid;water-soluble;negatively-charged membranes.
- Raafat D, von Bargen K, Haas A, Sahl HG, Appl. Environ. Microbiol., 74, 3764 (2008)
- Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M, Carbohydr. Polym., 151, 403 (1986)
- Jeon YJ, Kim SK, J. Chitin Chitosan., 6, 163 (2001)
- Park PJ, Je JY, Byun HG, Moon SH, Kim SK, J. Microbiol. Biotechnol., 14, 317 (2004)
- Park PJ, Je JY, Kim SK, Carbohydr. Polym., 55, 17 (2004)
- Porporatto C, Bianco ID, Riera CM, Correa SG, Biochem. Biophys. Res. Commun., 304(2), 266 (2003)
- Maezaki Y, Tsuji K, Nakagawa Y, Kawai Y, Akimoto M, Tsugita T, Takekawa W, Terada A, Hara H, Mitsuoka T, Biosci. Biotechnol. Biochem., 57, 1439 (1993)
- Illum L, Pharm. Res., 15, 1326 (1998)
- Kisko G, Sharp R, Roller S, J. Appl. Microbiol., 98(4), 872 (2005)
- Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG, Acta Pharmacol. Sin., 27, 932 (2004)
- Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S, Int. J. Food Microbiol., 71, 235 (2001)
- Sudarshan NR, Hoover DG, Knorr D, Food Biotechnol., 6, 257 (1992)
- Matsuzaki K, Sugishita K, Miyajima K, Febs Lett., 449, 221 (1999)
- Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y, Biochemistry., 31, 12416 (1992)
- Shimoda M, Ohki K, Shimamoto Y, Kohashi O, Infect. Immun., 63, 2886 (1995)
- Rao SB, Sharma CP, J. Biomed. Mater. Res., 34, 21 (1997)
- Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
- Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, Hahm KS, J. Microbiol. Biotechnol., 18, 1729 (2008)
- Howell SJ, Wilk D, Yadav SP, Bevins CL, Peptides., 24, 1763 (2003)
- Schlesinger DH, Goldstein G, Nature., 255, 423 (1975)