화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.4, 736-741, July, 2011
Catalytic decomposition of phenethyl phenyl ether and benzyl phenyl ether to aromatics over Pd/CsxH3.0-xPW12O40 (x = 2.0, 2.3, 2.5, 2.8, and 3.0)
E-mail:
Palladium catalysts supported on cesium-exchanged heteropolyacid (Pd/CsxH3.0-xPW12O40, x = 2.0-3.0) were prepared and applied to the decomposition of lignin model compounds. Phenethyl phenyl ether and benzyl phenyl ether were employed as lignin model compounds for representing β-O-4 and α-O-4 bonds in lignin, respectively. Phenol, ethylbenzene, benzene, and toluene were mainly produced by the decomposition of phenethyl phenyl ether. On the other hand, phenol, benzene, and toluene were mainly produced by the decomposition of benzyl phenyl ether. Conversion of lignin model compounds (phenethyl phenyl ether and benzyl phenyl ether) and total yield for main products were closely related to the surface acidity of CsxH3.0-xPW12O40. Conversion of lignin model compounds and total yield for main products increased with increasing surface acidity of CsxH3.0-xPW12O40. Among the catalysts tested, Pd/Cs2.5H0.5PW12O40 with the largest surface acidity of Cs2.5H0.5PW12O40 showed the highest conversion of lignin model compounds and total yield for main products.
  1. Kleinert M, Barth T, Energy Fuels, 22(2), 1371 (2008)
  2. Hwang S, Lee CH, Ahn IS, J. Ind. Eng. Chem., 14(4), 487 (2008)
  3. Yoon SH, van Heiningen A, J. Ind. Eng. Chem., 16(1), 74 (2010)
  4. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 10, 3552 (2010)
  5. Kleinert M, Barth T, Chem. Eng. Technol., 31(5), 736 (2008)
  6. Nimz HH, Casten R, Holz Roh-Werkst., 44, 207 (1986)
  7. Amen-Chen C, Pakdel H, Roy C, Bioresour. Technol., 79(3), 277 (2001)
  8. Sharma RK, Bakhshi NN, Bioresource Technol., 35, 57 (1991)
  9. ADJAYE JD, BAKHSHI NN, Fuel Process. Technol., 45(3), 161 (1995)
  10. Sheu YHE, Anthony RG, Soltes EJ, Fuel Process Technol., 19, 31 (1998)
  11. Petrocelli FP, Klein MT, Ind. Eng. Chem. Prod. Res. Dev., 24, 635 (1985)
  12. Kallury RKMR, Restivo WM, Tidwell TT, Boocock DGB, Crimi A, Douglas J, J. Catal., 96, 535 (1985)
  13. Yan N, Zhao C, Dyson PJ, Wang C, Liu LT, Kou Y, Chem. Sus. Chem., 1, 626 (2008)
  14. Koyama M, Bioresource Technol., 44, 209 (1993)
  15. Yang Q, Kapoor MP, Inagaki S, Shirokura N, Kondo JN, Domen K, J. Mol. Catal. A: Chem., 23, 85 (2005)
  16. Yang QH, Liu J, Yang J, Kapoor MP, Inagaki S, Li C, J. Catal., 228(2), 265 (2004)
  17. Park S, Lee SH, Song SH, Park DR, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK, Catal. Commun., 10, 391 (2009)
  18. Okuhara T, Mizuno N, Misono M, Adv. Catal., 41, 113 (1996)
  19. Youn MH, Park DR, Jung JC, Kim H, Barteau MA, Song IK, Korean J. Chem. Eng., 24(1), 51 (2007)
  20. Song IK, Barteau MA, Korean J. Chem. Eng., 19(4), 567 (2002)
  21. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
  22. Corma A, Martinez A, Martinez C, J. Catal., 164(2), 422 (1996)
  23. Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK, Korean J. Chem. Eng., 26(4), 994 (2009)
  24. Britt PF, Buchanan AC, Cooney MJ, Martineau DR, J. Org. Chem., 65, 1376 (2000)
  25. Park HW, Park S, Park DR, Choi JH, Song IK, Catal. Commun., 12, 1 (2010)
  26. Sato Y, Yamakawa T, Ind. Eng. Chem. Fundam., 24, 12 (1985)
  27. Kaichev VV, Bukhtiyarov VI, Rupprechter G, Freund HJ, Kinet. Catal., 46, 288 (2005)